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Preface

Metaheuristics have often been shown to be effective for difficult combinatorial
optimization problems appearing in various industrial, economical, and scientific
domains. Prominent examples of metaheuristics are evolutionary algorithms,
simulated annealing, tabu search, scatter search, memetic algorithms, variable
neighborhood search, iterated local search, greedy randomized adaptive search
procedures, estimation of distribution algorithms, and ant colony optimization.
Successfully solved problems include scheduling, timetabling, network design,
transportation and distribution problems, vehicle routing, the traveling sales-
person problem, satisfiability, packing and cutting problems, planning problems,
and general mixed integer programming.

The EvoCOP event series started in 2001 and has been held annually since
then. It was the first specifically dedicated to the application of evolutionary
computation and related methods to combinatorial optimization problems. Evo-
lutionary computation involves the study of problem-solving and optimization
techniques inspired by principles of natural evolution and genetics. Following
the general trend of hybrid metaheuristics and diminishing boundaries between
the different classes of metaheuristics, EvoCOP has broadened its scope over the
last years and invited submissions on any kind of metaheuristic for combinatorial
optimization problems.

This volume contains the proceedings of EvoCOP 2006, the 6th European
Conference on Evolutionary Computation in Combinatorial Optimization. It was
held in Budapest, Hungary, on April 10–12 2006, jointly with EuroGP 2006, the
9th European Conference on Genetic Programming, and EvoWorkshops 2006,
which consisted of the following seven individual workshops: EvoBIO, the 4th
European Workshop on Evolutionary Bioinformatics; EvoCOMNET, the Third
European Workshop on Evolutionary Computation in Communications, Net-
works, and Connected Systems; EvoHOT, the Third European Workshop on
Hardware Optimization; EvoIASP, the 8th European Workshop on Evolution-
ary Computation in Image Analysis and Signal Processing; EvoInteraction, the
First European Workshop on Interactive Evolution and Humanized Computa-
tional Intelligence; EvoMUSART, the 4th European Workshop on Evolutionary
Music and Art; and EvoSTOC, the Third European Workshop on Evolutionary
Algorithms in Stochastic and Dynamic Environments.

EvoCOP, originally held as an annual workshop, became a conference in 2004.
The events gave researchers an excellent opportunity to present their latest re-
search and to discuss current developments and applications, besides stimulating
closer future interaction between members of this scientific community. Accepted
papers of previous events were published by Springer in the series Lecture Notes
in Computer Science (LNCS – Volumes 2037, 2279, 2611, 3004, and 3448).
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EvoCOP submitted accepted acceptance ratio
2001 31 23 74.2%
2002 32 18 56.3%
2003 39 19 48.7%
2004 86 23 26.7%
2005 66 24 36.4%
2006 77 24 31.2%

The rigorous, double-blind reviewing process of EvoCOP 2006 resulted in a
strong selection among the submitted papers; the acceptance rate was 31.2%.
Each paper was reviewed by at least three members of the international Program
Committee. All accepted papers were presented orally at the conference and are
included in this proceedings volume. We would like to give credit to the members
of our Program Committee, to whom we are very grateful for their quick and
thorough work and the valuable advice on how to improve papers for the final
publication.

EvoCOP 2006 covers evolutionary algorithms as well as various other meta-
heuristics, like scatter search, tabu search, memetic algorithms, variable neigh-
borhood search, greedy randomized adaptive search procedures, ant colony
optimization, and particle swarm optimization algorithms. The contributions
are dealing with representations, heuristics, analysis of problem structures, and
comparisons of algorithms. The list of studied combinatorial optimization prob-
lems includes prominent examples like graph coloring, knapsack problems, the
traveling salesperson problem, scheduling, graph matching, as well as specific
real-world problems.

We would like to express our sincere gratitude to the two internationally
renowned invited speakers, who gave the keynote talks at the conference: Richard
J. Terrile, astronomer, Director, of the Center for Evolutionary Computation
and Automated Design at NASA’s Jet Propulsion Laboratory, and Stefan Voß,
Chair and Director of the Institute of Information Systems at the University of
Hamburg.

The success of the conference resulted from the input of many people to
whom we would like to express our appreciation. We would like to thank Philipp
Neuner for administrating the Web-based conference management system. The
local organizers and Judit Megyery did an extraordinary job for which we are
very grateful. Last but not least, the tremendous effort of Jennifer Willies and the
School of Computing, Napier University, in the administration and coordination
of EuroGP 2006, EvoCOP 2006, and EvoWorkshops 2006 was of paramount
importance.

April 2006 Jens Gottlieb
Günther R. Raidl
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Hybrid Genetic Algorithm Within
Branch-and-Cut for the Minimum Graph

Bisection Problem

Michael Armbruster1, Marzena Fügenschuh2, Christoph Helmberg1,
Nikolay Jetchev2, and Alexander Martin2

1 Chemnitz University of Technology,
Department of Mathematics, D-09107 Chemnitz, Germany

michael.armbruster@mathematik.tu-chemnitz.de
2 Darmstadt University of Technology,

Department of Mathematics, D-64289 Darmstadt, Germany
mfuegenschuh@mathematik.tu-darmstadt.de

Abstract. We develop a primal heuristic based on a genetic algorithm
for the minimum graph bisection problem and incorporate it in a branch-
and-cut framework. The problem concerns partitioning the nodes of a
weighted graph into two subsets such that the total weight of each set is
within some lower and upper bounds. The objective is to minimize the
total cost of the edges between both subsets of the partition. We for-
mulate the problem as an integer program. In the genetic algorithm the
LP-relaxation of the IP-formulation is exploited. We present several ways
of using LP information and demonstrate the computational success.

1 The Minimum Graph Bisection Problem

We consider a weighted graph G = (V, E) with edge costs we ∈ IR+, e ∈ E,
and node weights fi ∈ ZZ+, i ∈ V . A pair (V1, V2) satisfying V1 ∪ V2 = V and
V1 ∩ V2 = ∅ is called bipartition, if V1 �= ∅ and V2 �= ∅. V1 and V2 are called
clusters. Given a real number τ ∈ [0, 1] we define bounds lτ and uτ such that

lτ =
1− τ

2

∑
i∈V

fi and uτ =
1 + τ

2

∑
i∈V

fi.

A bipartition (V1, V2) such that the total node weight of each cluster stays
within the bounds lτ , uτ , i.e., lτ ≤ ∑

i∈Vk
fi ≤ uτ , k = 1, 2, holds, is called

bisection. A bisection cut Δ(V1, V2) is the set of edges joining nodes in different
clusters of the bisection (V1, V2). The minimum graph bisection problem is to
find a bisection (V1, V2) with the minimum cost of Δ(V1, V2):∑

e∈Δ(V1, V2)

we.

This problem is known to be NP-hard [8].

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 1–12, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 M. Armbruster et al.

Fig. 1. An example of a graph bisection (V1, V2) with τ = 0.1, lτ = 9 and uτ = 11.
The dashed edges build a bisection cut Δ(V1, V2). The numbers within the nodes and
the numbers nearby the edges correspond to node and edge weights respectively.

Graph bisection and its generalizations, e.g. when V is partitioned into more
than two subsets [6], have considerable practical significance, especially in the ar-
eas of VLSI design and parallel computing. With state-of-the-art solution meth-
ods it is still unrealistic to obtain exact solutions for large instances. Usually
such problems are tackled heuristically. Genetic algorithms are known to find
good solutions to graph partitioning problems, see e.g. [5, 11, 12, 14]. Successful
approaches combining methods from different classical metaheuristics, among
others including evolutionary algorithms, are presented in [4, 14]. This motivated
us to incorporate a primal heuristic based on a genetic algorithm in a branch-
and-cut framework. In [13] a classification of methods that combine exact and
heuristic procedures is given. Within this scheme our work can be categorized
as a heuristic that exactly solves relaxed problems: We exploit the solution of
the LP-relaxation for generating a start population as well as in the mutation
procedures of our genetic algorithm.

Our paper is structured as follows. In Section 2 we present integer program-
ming formulations for the minimum graph bisection problem. In Section 3 we
outline the structure of the genetic algorithm based on the fractional solution
of the LP-relaxation hybridized with the edge costs. In Section 4 we provide
computational results.

2 Integer Programming Models

For an integer programming formulation of the minimum graph bisection prob-
lem we introduce binary variables yij for all ij ∈ E. Each y ∈ {0, 1}|E| satisfying
yij = 1 if nodes i and j are in different clusters, and yij = 0 otherwise, corre-
sponds to an incidence vector of a bisection cut in G. Let

Y = {y ∈ {0, 1}|E| | y is an incidence vector of a bisection cut in G}.
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Fig. 2. Variables yij , ij ∈ E and zi, i ∈ V Fig. 3. Values of variables yij , ij ∈ E and
zi, i ∈ V corresponding to the bisection
cut presented in Fig. 1

We search for such an element of the set Y that minimizes
∑

e∈E weye. It remains
to describe Y by linear constraints. One formulation can be derived directly from
the model presented in [6] concerning a generalization of the graph bisection
problem. There are introduced additional binary variables zi for each node i ∈ V .
It is required that all z-variables corresponding to nodes assigned to one cluster
have the same value, see Fig. 2 and Fig. 3.

The following constraints guarantee that yij = 1 if and only if zi �= zj , i.e.,
nodes i and j are in different clusters, and yij = 0 otherwise.

∀ ij ∈ E zi − zj − yij ≤ 0 (1)
∀ ij ∈ E zj − zi − yij ≤ 0 (2)
∀ ij ∈ E −zj − zi + yij ≤ 0 (3)
∀ ij ∈ E zi + zj + yij ≤ 2 (4)

The constraint
lτ ≤

∑
i∈V

fizi ≤ uτ (5)

assures that the total weight of nodes in each cluster stays within the given
lower and upper bound. The projection of the feasible set defined by constraints
(1) - (5) onto the y-space equals the set Y . Note that, since our objective is to
minimize a positive weighted sum of y-components, constraint (4) is redundant
in the problem formulation.

Since the node variables zi, i ∈ V do not appear in the objective function we
get rid of them in the following way. We replace the constraints (1) - (4) with
a known class of valid inequalities for P = conv(Y ) called odd-cycle inequalities
(see also [3]):∑

e∈F

ye −
∑

e∈EC\F

ye ≤ |F | − 1, ∀C ⊂ G, F ⊂ EC , |F | is odd,
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where C = (VC , EC) is a cycle in G. These constraints require that each cycle C
in G must contain an even number of edges from the cut. Next, we reformulate
constraint (5) by selecting a node s ∈ V and extending E so that s is adjacent
to all other nodes in V . The weights wis of new edges are set to zero, see Fig. 4.

0

0

0

s

Fig. 4. New edges (dashed) incident to node s and their costs

For all nodes i ∈ V , which are in the same cluster as s, holds

lτ ≤ fs +
∑

i∈V \{s}
fi(1− yis) ≤ uτ ,

which is equivalent to
lτ ≤

∑
i∈V \{s}

fiyis ≤ uτ

using lτ + uτ =
∑

i∈V fi.
Thus we obtain a new integer programming model for the minimum graph

bisection problem:

min
∑
e∈E

weye

s.t.
(B)

∑
e∈F

ye −
∑

e∈EC\F

ye ≤ |F | − 1, ∀C ⊂ G, F ⊂ EC , |F | is odd

lτ ≤
∑

i∈V \{s}
fiyis ≤ uτ , for some s ∈ V

ye ∈ {0, 1}, ∀ e ∈ E.

The feasible solutions of (B) are in one-to-one correspondence to the elements
of Y . In the sequel we consider the latter model. Since the number of all possible
odd-cycles is exponential in |E| we do not include them all in the initial formula-
tion. Using the polynomial time separation algorithm given in [3] we add violated
odd-cycle-inequalities sequentially during separation within the branch-and-cut
algorithm.
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3 Hybrid Genetic Algorithm

Genetic algorithms solve optimization problems in an analogous manner to the
evolution process of nature [9]. A solution of a given problem is coded into a string
of genes termed individual. New solutions are generated by operations called
crossover and mutation. In a crossover two parents are drawn from the current
population and parts of their genes are exchanged resulting in child solutions.
A mutation is an adequate transformation of a single individual. Individuals
delivering the best objective value are selected for creating the next generation.

Table 1. The generic genetic algorithm

input yh ∈ IR|E|

p number of individuals in population, k factor of population growth,
g number of generations, f number of fitness loops,
M mutation type, mr mutation rate

(1) based on yh create initial population with p individuals
(2) while sufficient improvement on fitness

and number of loops less than g
do

(2a) perform crossover and mutation M
till population grows to kp individuals

(2b) evaluate fitness of each individual
(2c) select p best individuals

done

output individual with the best fitness value

In our heuristic, outlined in Table 1, we code an individual in two equivalent
ways. One form is the node representation, i.e., as a vector v ∈ {0, 1}n, n = |V |. If
vi = vj , nodes i and j are in one cluster. The other form is the edge representation
as a vector y ∈ {0, 1}E, where

yij =
{

0, vi = vj

1, vi = 1− vj .

To obtain a wider selection range of individuals we allow infeasible solutions in
the sense that the bounds lτ and uτ on the total weight node of clusters do not
need to be fulfilled.

The main idea of our genetic algorithm is to construct solutions to the bisec-
tion problem using the vector y′ ∈ [0, 1]E, which is a fractional solution to the
linear relaxation of (B). As an additional criterion we use the edge cost vector
w. Thus we hybridize the components of y′ and w by considering yh = f(y′, w).
The components yh

ij , ij ∈ E are supposed to provide the information, if i and j

should be assigned to the same cluster. The hybridization forms of yh vary on
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subroutines of the algorithm (creating the starting population, mutation proce-
dures) and will be explained sequentially in the next subsections.

3.1 Initial Population

The initial population is determined in the following way. Suppose we are given
a set F ⊆ E. How F is constructed we explain below. We compute a span-
ning forest on F such that for each of its components (V 1, E1), . . . , (V k, Ek) ⊂
(VF , EF ), k ≥ 2, holds: ∑

i∈V j

fi ≤ uτ , 1 ≤ j ≤ k.

The two heaviest sets V s, V t with respect to the weighted node sum form the
initial clusters. Using a bin packing heuristic we complete the clusters with the
node sets V j , 1 ≤ j ≤ k, j �= s, t. Thus we obtain an individual ṽ ∈ {0, 1}n with
ṽi = 0 for all i ∈ V s and ṽi = 1 for all i ∈ V t. See also heuristic Edge in [7].

We construct F due to the information delivered by the fractional LP-solution
y′ and the edge cost vector w. Concerning y′ the set F should contain edges with
LP-values close to zero. In regard to w, F should possibly contain edges with
high costs. We applied three methods of combining components of y′ and w. We
consider F := Fε ∪ Fρ, where Fε = {e ∈ E : y′

e < ε} and Fρ takes one of the
following forms.

(F1) Fρ = {e ∈ E : 1
1+w2

e
≤ Xρ},

(F2) Fρ = {e ∈ E : y′
e + 1

1+w2
e
≤ Xρ},

(F3) Fρ = {e ∈ E : Zy′
e + (1 − Z) 1

1+w2
e
≤ Xρ} for a random number

Z ∈ [0, 1],

where Xρ is either constantly equal to ρ or a random number in [0, ρ]. In (F1)
an edge enters F , if it has high cost and also a high LP-value with respect to ε.
In (F2) we allow the extension of F by edges with high cost if their LP-value is
not too high. In (F3) we prioritize randomly the approach (F1) and (F2) using a
parameterization of the corresponding components of y′ and w. As a comparison
to the above hybridization of the set F we consider also a random approach:

(R) Fρ = {e ∈ E : y′
e < Xρ and y′

e

Xρ
< Z} for a random Z ∈ [0, 1].

Note that the bounds ε and ρ control the number of edges entering F . If Fρ �= ∅
and one of the methods (F1) - (F3) is applied, we say that the set F is hybridized.

If Fρ = ∅ the starting population contains p duplicates of ṽ. Otherwise, we
select a new random value Xρ in each iteration creating a new individual, and
thus obtain a differentiated initial population.

3.2 Mutations

To create a new generation we apply four mutation types. The parameter
mr called mutation rate is introduced to control the percentage of exchanged
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components of vector v, or y respectively, in one mutation round. We apply also
hybridization methods to some of our mutations procedures. Concerning the im-
plementation issues, we were able to apply the edge costs to Mutation 3 and 4
(see below) without loss on the efficiency of our algorithm. We implemented the
following transformations.

Mutation 1. Let v ∈ {0, 1}|V | be an individual selected for the mutation. Let
VM ⊂ V be a randomly selected subset of v components such that |VM | < mr.
For all i ∈ VM we set vi := 1 − vi. Note that this general procedure does not
make use of the specifics of the underlying bisection problem.

Mutation 2. This procedure works in a similar way as Mutation 1 applied to
the edge representation of the individual. Let EM ⊂ E be a random selection of
edges such that |EM | < mr. For each ij ∈ EM such that yij := 1 we set yij := 0.
Then we accordingly update the values of vi and vj . It holds vi �= vj . Under a
random decision we set either vi := vj or vj := vi.

Mutation 3. Here we use the same idea as for creation of the initial population.
Let EM ⊂ E be a random selection of edges such that |EM | < mr and let Xρ ∈
be a random number. We consider the value pij := 1 − yh

ij as the probability
that nodes i and j are in the same cluster. For each ij ∈ EM , if pij > 1−Xρ we
set either vi := vj or vj := vi at random. If pij < Xρ then we set vi := 1− vj or
vj := 1− vi, again randomly.

In the non-hybridized version of this mutation we set yh
ij := y′. To hybridize

the method we apply the following mapping

yh
ij := Zy′

ij +
1− Z

1 + wij
,

for ij ∈ EM and a random Z ∈ [0, 1].

Mutation 4. This is a kind of a neighborhood search. Let v ∈ {0, 1}|V | be an
individual selected for the mutation. Let VM ⊂ V be a randomly selected subset
of v components such that |VM | < mr. For i ∈ VM we count the number of nodes
adjacent to i in each cluster, i.e., we determine the numbers

c0 = |{j : ij ∈ E, vj = 0}| and c1 = |{j : ij ∈ E, vj = 1}|.

If c0 > c1 we set vi = 0, and 1 otherwise.
To hybridize this mutation we sum also the edge costs of joining node i ∈ VM

with each cluster. We calculate

w0 =
∑

ij∈E:vj=0

wij and w1 =
∑

ij∈E:vj=1

wij .

We decide randomly, either vi takes its value depending on max{c0, c1}, as in
the original procedure, or depending on min{w0, w1}, i.e., if w0 < w1 we set
vi = 1.
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3.3 Crossover and Fitness Value

For the crossover operation we implemented the one-point crossover: we select
at random two parents from the present population and a crossover point from
the numbers {1, . . . , n− 1}. A new solution is produced by combining the pieces
of the parents. For instance, suppose we selected parents (u1, u2, u3, u4, u5) and
(v1, v2, v3, v4, v5) and crossover point 2. The child solutions are (u1, u2, v3, v4, v5)
and (v1, v2, u3, u4, u5).

To each individual we assign a fitness value. If it corresponds to a feasible
bisection, i.e., the total node weight in both clusters stays within the limits lτ
and uτ , we take the inverse of the objective function value in the incidence vec-
tor of the corresponding bisection cut. Otherwise we take a negated feasibility
violation, i.e., the weight of the cluster which is greater than uτ . The p fittest
individuals are selected from the expanded population and the next generation
is created. The fitness value of the best individual is stored. It defines the fitness
of the generation. We consider two stopping criteria of the genetic process. One
is defined by f , called fitness loop number. It gives the limit of loops we per-
form without increase in the generation fitness. The second limit is the maximal
number of loops we perform in one heuristic round. The output is the fittest
individual. If it corresponds to a feasible bisection cut the inverse of its fitness
value gives an upper bound for the problem (B).

4 Computational Results

All tests presented below are carried out using the settings

mr = 1, f = 60, g = 300, p = 150 k = 4.

In addition all mutation types are selected randomly uniformly distributed.
We refer to [2] for an overview on how the heuristic performs depending on

the selection of parameters p, k and M . In these preliminary studies, we only
considered ε = 0.01 and also did not apply any of the hybridization methods
explained in subsections 3.1 and 3.2. We established that small instances (|E| <
1000) can be most efficiently solved applying just the standard mutation type
(Mutation 1). In these cases the solution time was proportional to the parameters
p and k. On the contrary, on bigger instances (3500 < |E| < 6500) the heuristic
performed better with problem related mutation types (Mutation 2,3,4) and
the biggest choice of solutions, i.e., the population growth. Furthermore better
solutions of the LP-relaxation lead to better primal bounds computed by our
heuristic and to less time consumption.

In this paper we present our empirical investigation on three graph instances
selected from the sample given in [10] varying in the number of edges between
3500 and 6500. We generally set τ = 0.05. As a branch-and-cut framework we
use SCIP [1] with CPLEX [15] as LP-solver. All computations are executed on
a 2.6 GHz Pentium IV processor with 2 GB main storage.
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In our investigations we search for the possibly best selection of the set F in
the sense that our heuristic constantly improves upper bounds and hence consid-
erably contributes to the efficient termination of the branch-and-cut algorithm,
i.e., the closing of the optimality gap:

gap =
bu − wT y′

wT y′ ,

where bu is the lowest upper bound found so far. To this end, we vary the
following parameters and methods. At the beginning we just increase the value
of ε from 0.01 to 0.03 and 0.05. The success of the methods (F1) - (F3) depends
on the adequate selection of the pair (ε, ρ). It turns out that too small and too
large cardinalities of F deteriorate the solution quality. The parameters ε and ρ
appear to be coupled in a way that if we reduce ε we need to increase ρ and the
other way round. For our tests we selected the pairs (ε, ρ) from set

Bε,ρ := {(0.03, 0.2), (0.05, 0.1), (0.05, 0.2), (0.01, 0.4)}.

Table 2. Test results on the hybridization of set F and mutations 3 and 4

Instance.n.m ε ρ F M bub aub σ

taq.334.3763 0.03 ∼0.2 R + 341 530 184
0.01 ∼0.4 F3 - 341 505 231
0.01 0.4 F2 - 341 477 142
0.05 ∼0.2 F2 + 341 461 116
0.01 ∼0.4 F1 - 341 445 100

diw.681.3752 0.05 - - + 1228 1768 357
0.03 ∼0.2 F2 + 1219 1903 378
0.05 ∼0.1 F1 - 1205 1552 253
0.05 ∼0.1 F1 + 1199 1785 389
0.05 ∼0.1 F1 + 1185 1744 297

taq.1021.6356 0.05 0.1 F3 + 3678 3768 302
0.01 ∼0.4 F3 + 3641 4120 403
0.05 - - + 3425 3986 405
0.01 0.4 R + 3403 3957 438
0.05 ∼0.2 F3 + 3392 3992 481

n number of nodes
m number of edges
∼ Xρ ∈ [0, ρ] is selected randomly, otherwise Xρ = ρ
M = {+} hybrid mutations 3 and 4 are applied
bub best upper bound delivered by the heuristic
aub average upper bound
σ standard deviation
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We investigate next the impact of the updated mutations on the solution while
Fρ = ∅ and only ε vary. Then we integrate them together with all variations of
Fρ described in subsection 3.1. It turns out that the simultaneous application
of both, the hybrid set F and the hybrid mutations, not always contributes to
better solutions, in comparison to a separate one. However, improvements based
on the underlying problem, i.e., either to the initial phase of the algorithm or to
the mutations, still perform better than random ones.

In Table 2 we present the parameter selections for each instance, which con-
tribute to the best upper bounds and hence to the reduction of the optimal-
ity gap. Table 3 shows the number of processed nodes of the branch-and-cut
tree (N), which we set as the limit for the computations for each instance,
the average number of heuristic rounds (r) and the average execution time of
one heuristic round. None of the methods (F1) - (F3) appears to be generally

Table 3. Statistics on instances

Instance.n.m N r av. CPU time

taq.334.3763 300 50 25 sec.

diw.681.3752 100 20 51 sec.

taq.1021.6356 30 7 82 sec.

applicable for all instances. However, selecting an appropriate one contributes
to good results. The first instance is solved most efficiently with the parameter
pair (ε, ρ) = (0.01, 0.4) independently from the hybridization form of the set F .
(ε, ρ) = (0.05, 0.1) and the method (F1) seems to be the best parameter selection
for the second instance, while ε = 0.05 and method (F3) are the best for the
third instance.

Finally in Tables 4, 5 and 6 we give a comparison on how the branch-and-cut
performs without the genetic algorithm as well as the impact of the hybridization

Table 4. Branch-and-cut without the genetic algorithm

Instance.n.m N bub blb gap time

taq.334.3952 317 - 299 inf 3600
diw.681.3752 109 - 389 inf 3600
taq.1021.6356 42 - 469 inf 3600
blb best lower bound
gap optimality gap by termination of the branch-and-cut
time in CPU seconds
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on the solution process. Table 4 shows the results when applying the pure branch-
and-cut without the genetic heuristic. In Table 5 we show the best results, when
the heuristic is applied in the non-hybrid version, and in Table 6 the best results
for each instance achieved with the hybrid version. As time limit we used 3600
CPU sec.

Table 5. Branch-and-cut with the non-hybrid genetic algorithm

Instance.n.m ε N bub blb gap time

taq.334.3952 0.05 337 341 311 9.6 % 3600
diw.681.3752 0.01 108 1288 390 230.2 % 3600
taq.1021.6356 0.03 32 3896 435 795.6 % 3600

It pays off to apply the hybridization of the genetic heuristic with the excep-
tion of the instance taq.334.3952. But even in this case the hybrid version does
not deteriorate considerably the result. For the other two larger instances the
hybrid genetic algorithm yields the smallest gap by improving the upper bound.
This keeps the branch-and-bound tree smaller so that the best lower bound also
benefits.

Table 6. Branch-and-cut with the hybrid genetic algorithm

Instance.n.m N bub blb gap time

taq.334.3952 327 341 309 10.1 % 3600
diw.681.3752 115 1185 445 166.2 % 3600
taq.1021.6356 32 3403 450 656.2 % 3600

5 Conclusion

We developed a genetic algorithm as a primal heuristic routine in a branch-
and-cut framework for solving a minimum graph bisection problem. Following
our earlier observation that the good quality of fractional LP-solution can be
a significant help for the algorithm to deliver good solutions we looked for fur-
ther developments. Thus we integrated edge costs in selected subroutines of
the algorithm as a kind of decision support. We were able to show that at-
tempts of such hybridization deliver a good alternative to the standard random
approach.

Acknowledgments. This work is supported by German Research Foundation
(DFG).
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Abstract. In this paper we investigate and compare multi-objective and 
weighted single objective approaches to a real world workforce scheduling 
problem. For this difficult problem we consider the trade off in solution quality 
versus population diversity, for different sets of fixed objective weights. Our 
real-world workforce scheduling problem consists of assigning resources with 
the appropriate skills to geographically dispersed task locations while satisfying 
time window constraints. The problem is NP-Hard and contains the Resource 
Constrained Project Scheduling Problem (RCPSP) as a sub problem. We inves-
tigate a genetic algorithm and serial schedule generation scheme together with 
various multi-objective approaches. We show that multi-objective genetic algo-
rithms can create solutions whose fitness is within 2% of genetic algorithms us-
ing weighted sum objectives even though the multi-objective approaches know 
nothing of the weights. The result is highly significant for complex real-world 
problems where objective weights are seldom known in advance since it sug-
gests that a multi-objective approach can generate a solution close to the user 
preferred one without having knowledge of user preferences. 

1   Introduction  

In collaboration with an industrial partner we have studied a workforce scheduling 
problem which is a resource constrained scheduling problem similar to but more com-
plex and “messy” than many other well-studied scheduling problems like the RCPSP 
(Resource Constrained Project Scheduling Problem) and job shop scheduling prob-
lem, for which much work has been done [1]. The problem is based on our work with 
Vidus Ltd. (an @Road company) which has developed scheduling solutions for very 
large, complex mobile workforce scheduling problems in a variety of industries. Our 
workforce scheduling problem is concerned with assigning people and other resources 
to geographically dispersed tasks while respecting time window constraints and is like 
many scheduling problems NP-Hard [1] because it contains the RCPSP as a sub-
problem. 

                                                           
* This work was funded by an EPSRC CASE Studentship in partnership with Vidus Ltd. (an 

@Road company). 
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This paper is structured as follows: we outline a model of our workforce schedul-
ing problem in section 2, discuss related work in section 3 and propose a multi-
objective genetic algorithm for solution of the workforce scheduling problem in  
section 4. In section 5 we investigate multi-objective genetic algorithms and compare 
them to other single objective genetic algorithms in terms of solution quality and 
diversity. We present conclusions in section 6. 

2   The Workforce Scheduling Problem 

The workforce scheduling problem that we consider consists of four main compo-
nents: Tasks, Resources, Skills and Locations. A task Ti is a job or part of a job that 
needs to be completed. Each task must start and end at a specified location. Usually 
the start and end locations are the same but they may be different. Each task has one 
or more time windows. Some time windows which are an inconvenience for the cus-
tomer have an associated penalty. We have a set {T1,T2,…,Tn} of tasks to be com-
pleted. Each task is undertaken by one or more resources. We have set of resources 
{R1,R2,…,Rm}. A task requires resources with the appropriate skills. We have a set 
{S1,S2,…,Sk} of skills. Task Ti requires skills ],...,,[TS )(21

i
it

ii TSTS  with work require-

ments ],...,, [ )(21
i

it
ii www where i

qw  is the amount of skill i
qTS  required. Task Ti also has 

an associated priority p(Ti). Resources are the components that undertake the work 
and possess skills. Resource Rj possesses skills ],...,,[RS )(21

j
jr

jj RSRS . A function 

c(R,S) expresses the competence of resource R at skill S, relative to an average com-
petency. Each resource R travels from location to location at speed v(R). For tasks T1, 
T2, d(T1, T2) measures the distance between the end location of T1 and the start loca-
tion of T2. There are three main groups of constraints: task constraints, resource con-
straints and location constraints and they are described below.  

Task constraints: 

• Each task can be worked on only within specified time windows.  
• Some tasks require other tasks to have been completed before they can begin 

(precedence constraints). 
• Some tasks require other tasks to be started at the same time (assist con-

straints). 
• Tasks may be split across breaks within a working day. No tasks may take 

more than one day. 
• For a task to be scheduled it must have exactly one resource assigned to it for 

each of the skills it requires. 
• All assigned resources have to be present at a task for its whole duration re-

gardless of their skill competency and task skill work requirement. 
• If a task Ti with skill requirements ],...,,[TS )(21

i
it

ii TSTS  and amounts 

],...,, [ )(21
i

it
ii www  is carried out by resources ],...,,[R )(21

i
it

ii RR  then the time 

taken is 
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i.e. the greatest time taken for any single resource to complete a skill requirement 

Resource constraints: 

• A resource R travels from location to location at a fixed speed v(R). 
• Resources may only work during specified time windows. 
• Resources can only work on one task at once and only apply one skill at a 

time. 

Location constraints: 

• Resources must travel to the location of each task they work on, and are un-
available during this travel time. 

• Resources must start and end each day at a specified “home” location and 
must have sufficient time to travel to and from their home location at the 
start and end of each day. 

2.1   Objectives 

When building a schedule many different and often contradictory business objectives 
are possible. In this paper we consider three objectives. The first objective is Schedule 
Priority (SP), given by 

=
}scheduled is :{

)(
iTi

iTpSP  

Maximising Schedule Priority maximises the importance of the tasks scheduled to 
the user (and implicitly minimises the importance of tasks unscheduled).  

The second objective measures Travel Time (TT) across all resources. Define 
A={(i1,i2,j):task Ti1 comes immediately before Ti2 in the schedule of resource Rj}. 
Then, 

∈
=

Ajii j

ii

Rv

TTd
TT

),2,1(

21

)(

),(
 

Travel to and from home locations is handled by considering dummy tasks fixed at 
the start and end of the working day, at the home location of each resource.  

The third objective measures the inconvenience associated with completing tasks 
or using resources at an inconvenient time, which we have labelled Schedule Cost 
(SC). In order to express this accurately we express the time windows for Resource R 
using a function  where (R,t) is the cost per unit time for resource R working at  
time t. We introduce a variable 

=Χ
                                                                    otherwise0

 at time ng)or traveli task a(on busy  is  resource if1
),(

tR
tR  

Similarly we introduce ’ where ’(T,t) is the cost per unit time for task T being 
executed at time t and  
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Other objectives are possible but these three objectives express most of the primary 
concerns of the users in this case, at a high level. Considering lower level objectives 
at regional and resource group level could, however, give in many more objectives for 
this problem. 

3   Related Work 

3.1   Similar Problems 

The RCPSP is a generalisation of several common scheduling problems including 
job-shop, open-shop and flow-shop scheduling problems [1]. The RCPSP consists of 
a set of Tasks to be performed using a set of finite capacity resources. In common 
with the model in the preceding section, the RCPSP has tasks which are undertaken 
by finite capacity resources subject to precedence constraints. However, the notion of 
tasks requiring skills and resources possessing multiple skills is essentially absent, as 
is the travel aspect. Precedence constraints are a major part of the RCPSP model and 
in many RCPSP problems the precedence constraints are arguably the most complex 
constraints with every task involved in a precedence relationship with one or more 
other tasks [1]. They are less significant for our model with many tasks having no 
predecessors or successors. Our problem has time-varying resource availability which 
is rarely considered in the RCPSP, however Brucker [2] discusses an RCPSP with 
time dependent resource profiles which model the changing availabilities of re-
sources.  

The resource constrained multiple project scheduling problem (rc-mPSP) [3] is less 
widely studied than the RCPSP. An rc-mPSP problem consists of several RCPSP 
problems that are not connected by precedence constraints, making the overall prob-
lem less time constrained than an equivalent RCPSP problem with the same tasks 
(and the extra precedence constraints). These precedence constraints are closer to the 
ones observed in our workforce scheduling problem. 

A recent review of work on personnel scheduling is presented in [18]. In contrast 
to the RCPSP, personnel scheduling does include a notion of time-varying resource 
availability, in some cases resources availability is limited to certain times of day as 
for our problem. Some personnel scheduling problems such as crew scheduling also 
include travel between locations. However, personnel scheduling problems generally 
do not contain any notion of precedence, which is highly significant to both our prob-
lem and the RCPSP.  
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3.2   Solution Techniques for the RCPSP 

Since their introduction by Bremermann and Fraser and the seminal work done by 
Holland [4], genetic algorithms (GAs) have been developed extensively to tackle 
problems including the travelling salesman problem, bin packing problems and sched-
uling problems (see for example [5]). [6] reviewed a range of meta-heuristics for 
solution of the RCPSP and showed genetic algorithms to work consistently well com-
pared with other methods such as tabu search and simulated annealing. Many of the 
genetic algorithms presented in [6] worked by optimising the order in which tasks are 
passed to a schedule generation scheme (a greedy constructive heuristic). A serial 
schedule generation scheme (serial SGS) builds schedules by inserting tasks one by 
one into the schedule as early as possible. Most of the techniques reviewed in [6] use 
a serial SGS. Serial SGSs have been shown to be superior in general to parallel SGSs 
which works by taking a slice of time and inserting as many tasks as possible into it 
before moving on to another later slice of time. One such genetic algorithm is pre-
sented in [5]. Another more complex approach is presented in [7], here a genetic algo-
rithm is used to generate a schedule in a similar fashion to [5], however once the 
schedule is generated, a forward backward improvement heuristic is used to improve 
the resulting schedule. The GA in [5] is shown to work well across a set of test 
RCPSP problems [6], however the genetic algorithm presented in [7] with forward 
backward improvement is shown to be one of the best approaches presented across 
the test problem set. None of the aforementioned approaches use real world problems 
or real problem data and so their performance under such conditions is unknown. 

3.3   Multi-objective Scheduling Techniques 

The most widely used method for combining multiple objectives in genetic algorithms 
is the weighted sum method. This can be problematic as practitioners estimated 
weights are often not a good reflection of the true requirements for a globally good 
solution. Simply put, a user is not used to being asked to explicitly define the relative 
importance of different problem goals, and the weights defined may reflect small 
local effects (since they are easy for the user to understand) rather than more difficult 
to define global ones.  

Multi-objective approaches do not rank solutions directly as weighted sum ap-
proaches do; instead they use the notion of dominance and the distribution of solu-
tions in objective space to decide the overall quality of a population of solutions. An 
important notion is that of a non-dominated solution, which is a solution where there 
are no other solutions better with respect to all the objectives. Multi-objective ap-
proaches try to maintain a set of solutions which are non-dominated and to get a good 
distribution of these solutions in objective space. This is useful in scheduling as the 
user no longer has to specify a set of specific weights representing the kind of sched-
ule they think they are looking for, instead they can choose a schedule from a diverse 
set. A range of multi-objective genetic algorithms are among the most widely used 
approaches. 

The Vector Evaluated Genetic Algorithm (VEGA) was proposed and compared 
with an adaptive random search technique in [8], which showed that VEGA out per-
formed adaptive random search in terms of solution quality. VEGA finds a set of  
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non-dominated solutions and works by splitting the population randomly in to a num-
ber of subpopulations (the number of subpopulations being equal to the number of 
objectives to be considered). The population evolves with a mating pool created using 
a proportion of individuals from each sub-population with different objective func-
tions. The technique is simple, however, each solution is only evaluated with one 
objective at any time and because of this eventually all solutions converge towards 
one solution with respect to a single objective [9]. In real world problems this conver-
gence towards one objectives best solution is unworkable where we seek a trade off 
between objectives.  

The Non-dominated Sorting Genetic Algorithm (NSGA) [10], and its enhancement 
NSGA-II [11] sort the population into non-dominated fronts. This is done by first 
identifying non-dominated individuals in the population, these are on the first front, 
the first front is then removed from the population and then non-dominated individu-
als are identified again, these comprise the second front. This process is repeated until 
all fronts are identified. The computational complexity of the algorithm has been 
reduced from O(mN3) for NSGA to O(mN2) for NSGA-II per generation, where m is 
the number of objectives and N is the population size; however the memory require-
ments have increased from O(N) to O(N2). Elitism has been introduced in NSGA-II to 
force the algorithm to keep the extreme maximum and minimum solutions for all 
objectives, as has a new algorithm for crowding distance calculation. Crowding dis-
tance is a representation of the density of neighbouring individuals on any given front. 
Mating selection in NSGA-II is performed by binary tournament selection using the 
crowded comparison operator. If both solutions are on the same front, then the crowd-
ing distance is used as a tie breaker. The parent and child populations are combined 
and this new population (of size 2N) is ranked according to front. Fronts are then 
added to the next generation’s population (starting with the non-dominated front) until 
the size exceeds N. Once this has been done, crowding distance assignment is applied 
to the last front that has been added and the crowded comparison operator is used to 
sort this final front and the worst individuals are removed to give the next genera-
tion’s population.  

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced in [12], and 
further improved to SPEA2 in [13]. SPEA2 uses Pareto based ideas in both popula-
tion selection and mating selection. Fitness assignment in SPEA2 works in two parts: 
domination, and distance to the kth nearest neighbour. The domination of an individual 
i, is calculated by counting the individuals dominated by i, this is the individuals 
strength value. Then, the raw fitness R(i) is calculated for each individual i by adding 

all the strength values of individuals dominated by i. The distance value k
iσ  is cre-

ated for each individual i by finding the Euclidean distance to all other individuals in 
objective space and sorting them in ascending order. The kth closest is taken where k is 
a user defined parameter ([13] recommends k parameter to be the square root of the 
combined size of the population and the archive population). Then a density value 

D(i) is calculated by the equation
( )2

1
)(

+
=

k
i

iD
σ

 ensuring that (in the final calcula-

tion of fitness) the raw fitness value takes precedence over it. Finally, the total fitness 
for each individual (i) can be calculated using )()()( iDiRiF += . 
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SPEA2 uses an archive to allow individuals to survive from one generation to the 
next. At the end of a generation all non-dominated individuals from the archive and 
the population are copied to a new archive. If the archive is not filled by this process 
the best non-dominated individuals (according to the SPEA2 fitness function) from 
the population can also be copied into it. If however, the archive is overfilled by non-
dominated individuals it is truncated by removing individuals based on their k

iσ  

distance to other individuals in the archive.  
NSGA-II and SPEA2 have been compared with SPEA and Pareto Envelope-Based 

Selection Algorithm (PESA) [14] on a set of test problems including the knapsack 
problem in [13]. NSGA-II and SPEA2 are shown to perform the best out of all tested. 
SPEA2 is said to be better in higher dimensional objective spaces and the solutions 
generated by SPEA2 are shown to dominate those generated by NSGA-II 80% of the 
time (on average).  

4   Application of Multi-objective Genetic Algorithms to Our  
     Workforce Scheduling Problem 

As the review of [6] showed genetic algorithms such as [7] and [5] perform well 
across a set of test problem instances, we have chosen to adopt a similar approach to 
our workforce scheduling problem. We use a serial schedule generation scheme to 
encapsulate the assignment of tasks to resources and constraint handling for our prob-
lem. A permutation based genetic algorithm optimises the order in which tasks are 
passed to this serial schedule generation scheme. We consider two multi-objective 
GAs to a single, weighted sum objective GA which uses binary tournament selection 
and elitist replacement. The multi-objective genetic algorithms will use NSGA-II and 
SPEA2 multi-objective approaches for the mating and environmental selection 
phases. 

4.1   Serial Schedule Generation Scheme (SGS) 

The serial schedule generation scheme we have built uses a permutation of tasks to 
generate a schedule. As our problem is more complex than traditional RCPSP prob-
lems (due the way skills, resources and task durations are defined) the task scheduling 
process within the SGS is split into two sub processes, resource selection and task 
insertion. This is also where many of the similarities between the RCPSP serial SGS 
methods defined in [15] and our method end. This is unfortunate as for the RCPSP 
solved with an activity list serial SGS there is always an order of tasks which will 
generate an optimal schedule when a regular performance measure is considered [15]. 
However, this is not the case with our SGS that because of the complexity of allocat-
ing resources having appropriate skills to a task requiring multiple skills, and time 
window constraints. The schedules generated will however always be feasible.  

The motivation for divorcing resource selection from task insertion in this way is 
mainly due to the fact that until resources are selected for a task, there is no way of 
knowing exactly how long the task will take. This uncertainty causes many problems 
in the scheduling process, and is often the cause of tasks going unscheduled.  
Resources are selected by finding the intersection of the periods of time they have 
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available in common with the task time windows and the other resources already 
selected (here a larger amount of available time is preferable). Due to the considera-
tion of travel and competency in resource selection ties rarely occur, however when 
they do they are broken randomly. Once all resources are chosen the task is then in-
serted as early as possible in the schedule.  

5   The Competitiveness of Multi-objective Genetic Algorithms 

Real world scheduling problems often have many and contradictory objectives mak-
ing them an interesting testbed for comparing the performance of multi-objective 
genetic algorithms and weighted sum genetic algorithms. In our experiments we in-
tend to investigate the competitiveness of multi-objective genetic algorithms when 
compared with weighted sum genetic algorithms in terms of both solution quality and 
diversity. 

In our experiments diversity will be measured using the “Max Spread” measure 
from [9] and the “Morrison and De Jong” measure which is based around ideas taken 
from the moment of inertia in mechanical engineering [16]. Solution quality will be 
assessed for each population (whether from a multi-objective or weighted sum run) by 
several weighted sum objective functions. We do not expect that multi-objective 
methods will outperform all weighted sum methods when assessed by weighted sum 
objective functions but we are interested to see how close they come. Equally, we do 
not expect weighted sum methods to outperform multi-objective methods in terms of 
diversity but are interested to see how the diversity of the two respective populations 
compares. In order to reduce the effects of randomness, each method (7 weighted sum 
and 2 multi-objective) will be run ten times each on a set of three different problem 
instances with a stopping criterion of 250 generations of evolution. The problem in-
stances were generated using the problem generator we have developed in collabora-
tion with Vidus Ltd. (an @Road company). The test problems we used had 100 tasks, 
10 resources and 6 skills, considered over a 3-day scheduling period, and correspond 
to a “small to medium sized” problem in practice.  

These experiments were run using a master-slave approach to parallelise and thus 
speed up the GA runs. We used 26 2.8Ghz Pentium 4 machines (25 slaves and one 
master) and each of the GAs has a population size of 100 and was allowed the same 
number of schedule evaluations over 250 generations. Each run took around 1 (single-
machine) CPU hour on this parallel architecture. Since we consider 9 solution ap-
proaches and 10 runs for each approach for 3 problem instances, a total of 270 runs 
were carried out. 

Values for mutation and crossover rates will be taken from previous parameter tun-
ing experiments for the weighted sum objective method with binary tournament selec-
tion and elitist replacement, these being a crossover rate of 25% and a mutation rate 
of 1%. The reader should note that these parameters have not been specially tuned for 
the multi-objective methods, particularly since such tuning is much more difficult 
when objective weights are not assumed.  

The weighted sum methods will use the objective functions shown in Table 1 
where SP is the sum of all the priority values of all scheduled tasks, SC is the total 
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schedule cost, and TT is the total travel time on the schedule. The values in Table 1 
have been chosen to provide a trade off between objectives. Here we are considering a 
diverse range of weights to see if we can get close to a schedule which is good for a 
human scheduler without knowing what the human scheduler’s ideal weighting 
scheme is, since the human scheduler is unlikely to know these weights in practise. 

Table 1. Objective functions for weighted sum methods 

Formula for Calculation Name on Graphs 
f = SP SP 
f = SP – (SC * 6) SP_6SC 
f = SP – (TT * 6) SP_6TT 
f = SP – (SC * 2) – (TT * 4) SP_2SC_4TT 
f = SP – (SC * 4) – (TT * 2) SP_4SC_2TT 
f = SP – (SC * 2) – (TT * 6) SP_2SC_6TT 
f = SP – (SC * 6) – (TT * 2) SP_6SC_2TT 

The genetic algorithm was run ten times with each weighted sum objective func-
tion shown in Table 1, as well as ten times with both NSGA-II and SPEA2 multi-
objective methods. Each of these runs were assessed by each of the objective  
functions in Table 1 as well as the “Max Spread” [9] and “Morrison and De Jong” 
[16] diversity measures. Averages over the ten runs of each have been taken and plot-
ted as a percentage of the best average found.  

5.1   Experimental Results 

Figure 1 shows the average fitness value of the best individual in the final population 
over thirty runs (three problem instances run ten times each). Each group of results 
along the x-axis represents the performance of all the different types of GA when 
assessed using fixed objective weights as given in table 1. For example, the first 
group (of 9 bars) in Figure 1 shows the performance of the multi-objective methods 
NSGA-II and SPEA2 as well as the single objective methods (with different objective 
weights) when assessed using the SP objective function. 

Figure 1 shows that multi-objective algorithms find solutions that are within 2% of 
the best solution found by weighted sum objectives (when assessed by the weighted 
sum objectives) without knowing what the weights are and often find a solution 
within 1% of the best. This cannot be said of the weighted sum objective approaches 
which use the “wrong” weights whose performance is much less consistent. Figure 1 
illustrates the possible effect of a poorly defined set of weights on resulting solution 
quality, for example if our actual global objective function (not known to the user) is 
SP_6SC and the user defines SP as the objective function then the solution they ended 
up with would be much worse in global terms than if they had used a multi-objective 
approach. The NSGA-II approach yielded results as good or slightly better than 
SPEA2 on average in all cases. 
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Fig. 1. The relative performance of multi-objective and single objective weighted sum genetic 
algorithms when assessed by different weighted sum objective functions 
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Fig. 2. The relative performance of multi-objective and single objective weighted sum genetic 
algorithms when assessed by diversity metrics 

An interesting observation is that sometimes the “best” result is not found by the 
GA that is running the same objective function weights as is being used to assess  
the runs, an example of this is shown in Figure 1 when assessing the runs with the 
SP_6SC_2TT objective, here the GA that was run with the SP_6SC_2TT objective is 
outperformed by both NSGA-II and SPEA2 albeit by a small amount. In a case like 
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this we believe that there may be a mismatch between the schedule generation 
scheme‘s task-resource allocation heuristic and the objective weights chosen, but  
this flaw is not exposed by the NSGA-II and SPEA2 methods which have a diverse 
population. 

Figure 2 shows the average values of the diversity measures for the different GA 
populations. Here NSGA-II and SPEA2 yield a much more diverse population than 
weighted sum approaches. 

The results of figures 1 and 2 show that where it may not be possible for a user to 
define weights for each objective, still at least one of the population generated using a 
multi-objective approach is likely to be close to the users preference, even though this 
preference is not known in advance. A new problem arises in this case for the user, 
that of selecting a good solution from a population. However, this is a problem that 
the user is more familiar with and which is likely to yield better results than choosing 
objective weights in many cases. Ways in which the users ability to choose between 
schedules for the RCPSP such as those considered in Shackleford and Corne [17] and 
there approaches could be useful here. 

6   Conclusions 

In this paper multi-objective genetic algorithms have been shown to be an effective 
approach allowing the user to avoid having to define weights for a set of objectives in 
exchange for a small decrease in solution quality. This is useful as expressing their 
knowledge as a set of weights for a real world problem is usually difficult for human 
users who are not used to being asked to explicitly define the relative importance of 
different problem goals. 

One problem with this approach is that it replaces the problem of defining a set of 
weights with the problem of selecting a solution from the Pareto optimal set which is 
an interesting research question in itself. However, analysing schedules and choosing 
a good one is a much more familiar activity for a human scheduler. 

In future work it will be interesting to consider problems with a larger number of 
objectives, and methods which integrate the users’ ability to effectively select a solu-
tion into the solution process. 
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Abstract. A new model for evolving the structure of a Particle Swarm
Optimization (PSO) algorithm is proposed in this paper. The model is
a hybrid technique that combines a Genetic Algorithm (GA) and a PSO
algorithm. Each GA chromosome is an array encoding a meaning for
updating the particles of the PSO algorithm. The evolved PSO algo-
rithm is compared to a human-designed PSO algorithm by using ten
artificially constructed functions and one real-world problem. Numerical
experiments show that the evolved PSO algorithm performs similarly
and sometimes even better than standard approaches for the considered
problems.

1 Introduction

Particle Swarm Optimization (PSO) is a population based stochastic optimiza-
tion technique developed by Kennedy and Eberhart in 1995 [8]. Standard PSO
algorithm randomly initializes a group of particles (solutions) and then searches
for optima by updating all particles along a number of generations. In any iter-
ation, each particle is updated by following some rules [16].

Standard model implies that particles are updated synchronously [16]. This
means that the current position and speed for a particle is computed taking into
account only information from the previous generation of particles.

A more general model allows updating any particle anytime. This basically
means three things:

1. The current state of the swarm is taken into account when a particle is
updated. The best global and local values are computed for each particle
which is about to be updated, because the previous modifications could affect
these two values. This is different from the standard PSO algorithm where
the particles were updated taken into account only the information from the
previous generation. Modifications performed so far (by a standard PSO)
in the current generation had no influence over the modifications performed
further in the current generation.

2. Some particles may be updated more often than other particles. For instance,
in some cases, is more important to update the best particles several times
per generation than to update the worst particles.
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3. We will work with only one swarm. Any updated particle will replace its
parent. Note that two populations/swarms are used in the standard PSO and
the current swarm is filled taken information from the previous generation.

Unlike Parsopoulos’ work [13] which use Differential Evolution algorithm (sug-
gested by Storn and Price [14]) for “on fly” adaptation of the PSO parameters,
our work looks for designing a new PSO algorithm by taking into account the
information from the problem being solved.

Our main purpose is to evolve the structure of a PSO algorithm. This basically
means that we want to find which particles should be updated and which is the
order in which these particles are updated. In this respect we propose a new
technique which is used for evolving the structure of a PSO algorithm. We evolve
arrays of integers which provide a meaning for updating the particles within a
PSO algorithm during iteration.

Our approach is a hybrid technique that works at two levels: the first (macro)
level consists in a steady-state GA [7] whose chromosomes encode the structure
of PSO algorithms. In order to compute the quality of a GA chromosome we
have to run the PSO encoded into that chromosome. Thus, the second (micro)
level consists in a modified PSO algorithm that provides the quality for a GA
chromosome.

Firstly, the structure of a PSO algorithm is evolved and later, the obtained
algorithm is used for solving eleven difficult function optimization problems The
evolved PSO algorithm is compared to a human-designed PSO algorithm by
using 10 artificially constructed functions and one real-world problem. Numer-
ical experiments show that the evolved PSO algorithm performs similarly and
sometimes even better than standard approaches for several well-known bench-
marking problems.

This research was motivated by the need of answering several important ques-
tions concerning PSO algorithms. The most important question is: Can a PSO
algorithm be automatically synthesized by using only the information about the
problem being solved? And, if yes, which is the optimal structure of a PSO algo-
rithm (for a given problem)? We better let the evolution find the answer for us.

The rules employed by the evolved PSO during a generation are not prepro-
grammed. These rules are automatically discovered by the evolution.

Several attempts for evolving Evolutionary Algorithms (EAs) using similar
techniques were made in the past. A non-generational EA was evolved [11] us-
ing the Multi Expression Programming (MEP) technique [11]. A generational
EA was evolved [12] using the Linear Genetic Programming (LGP) technique.
Numerical experiments have shown [11, 12] that the evolved EAs perform simi-
larly and sometimes even better than the standard evolutionary approaches with
which they have been compared. A theoretical model for evolving EAs has been
proposed in [15].

The paper is structured as follows: section 2 describes, in detail, the proposed
model. Several numerical experiments are performed in section 3. Test functions
are given in section 3.1. Conclusions and further work directions are given in
section 4.
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2 Proposed Model

2.1 Representation

Standard PSO algorithm works with a group of particles (solutions) and then
searches for optima by updating them during each generation.

During iteration, each particle is updated by following two “best” values.
The first one is the location of the best solution that a particle has achieved so
far. This value is called pBest. Another “best” value is the location of the best
solution that any neighbor of a particle has achieved so far. This best value is a
neighborhood best and called nBest.

In a standard PSO algorithm all particles will be updated once during the
course of iteration.

In real-world swarm (such as flock of birds) not all particles are updated in
the same time. Some of them are updated more often and others are updated
later or not at all. Our purpose is to simulate this, more complex, behavior. In
this case we were interested to discover (evolve) a model which can tell us which
particles must be updated and which is the optimal order for updating them.

We will use a GA [7] for evolving this structure. Each GA individual is a
fixed-length string of genes. Each gene is an integer number, in the interval
[0...SwarmSize− 1]. These values represent indexes of the particles that will be
updated during PSO iteration.

Some particles could be updated more often and some of them are not updated
at all. Therefore, a GA chromosome must be transformed so that it has to contain
only the values from 0 to Max, where Max represents the number of different
genes within the current array.
Example. Suppose that we want to evolve the structure of a PSO algorithm
with 8 particles. This means that the SwarmSize = 8 and all chromosomes of
our macro level algorithm will have 8 genes whose values are in the [0, 7] range.
A GA chromosome with 8 genes can be:

C1 = (2, 0, 4, 1, 7, 5, 6, 3).

For computing the fitness of this chromosome we will use a swarm with 8
individuals and we will perform, during one generation, the following updates:

update(Swarm[2]), update(Swarm[7]),
update(Swarm[0]), update(Swarm[5]),
update(Swarm[4]), update(Swarm[6]),
update(Swarm[1]), update(Swarm[3]).

In this example all 8 particles have been updated once per generation.
Let us consider another example which consists of a chromosome C2 with 8

genes that contain only 5 different values.

C2 = (6, 2, 1, 4, 7, 1, 6, 2)

In this case particles 1, 2 and 6 are updated 2 times each and particles 0, 3, 5
are not updated at all. Because of that it is necessari to remove the useless
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particles and to scale the genes of the GA chromosome to the interval [0 ... 4].
The obtained chromosome is:

C ′
2 = (3, 1, 0, 2, 4, 0, 3, 1).

The quality for this chromosome will be computed using a swarm of size 5
(5 swarm particles), performing the following 8 updates:

update(Swarm[3]), update(Swarm[4]),
update(Swarm[1]), update(Swarm[0]),
update(Swarm[0]), update(Swarm[3]),
update(Swarm[2]), update(Swarm[1]).

We evolve an array of indexes based on the information taken from a function
to be optimized. Note that the proposed mechanism should not be based only
on the index of the particles in the Swarm array. This means that we should not
be interested in updating a particular position since that position can contain
(in one run) a very good individual and the same position could hold a very
poor individual (during another run). For instance it is easy to see that all
GA chromosomes, encoding permutations, perform similarly when averaged over
(let’s say) 1000 runs.

In order to avoid this problem we sort (after each generation) the Swarm
array ascending based on the fitness value. The first position will always hold
the best particle at the beginning of a generation. The last particle in this array
will always hold the worst particle found at the beginning of a generation. In
this way we will know that update(Swarm[0]), will mean something: not that
one of the particles is updated, but that the best particle (at the beginning of
the current generation) is updated.

2.2 Fitness Assignment

The model proposed in this paper in divided in two levels: a macro level and
a micro level. The macro-level is a GA algorithm that evolves the structure
of a PSO algorithm. For this purpose we use a particular function as training
problem. The micro level is a PSO algorithm used for computing the quality of
a GA chromosome from the macro level.

The array of integers encoded into a GA chromosome represents the order of
update for particles used by a PSO algorithm that solves a particular problem.
We embed the evolved order within a modified Particle Swarm Optimization
algorithm as described in sections 2 and 2.3.

Roughly speaking the fitness of a GA individual is equal to the fitness of the
best solution generated by the PSO algorithm encoded into that GA chromo-
some. But, since the PSO algorithm uses pseudo-random numbers, it is very
likely that successive runs of the same algorithm will generate completely dif-
ferent solutions. This problem can be handled in a standard manner: the PSO
algorithm encoded by the GA individual is run multiple times (50 runs in fact)
and the fitness of the GA chromosome is averaged over all runs.
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2.3 The Algorithms

The algorithms used for evolving the PSO structure are described in this section.
Because we use a hybrid technique that combines GA and PSO algorithm within
a two-level model, we describe two algorithms: one for macro-level (GA) and
another for micro-level (PSO algorithm).

The Macro-level Algorithm.The macro level algorithm is a standard GA
[7] used for evolving particles order of update. We use steady-state evolution-
ary model as underlying mechanism for our GA implementation. The GA al-
gorithm starts by creating a random population of individuals. Each individual
is a fixed-length array of integer numbers. The following steps are repeated un-
til a given number of generations are reached: Two parents are selected using
a standard selection procedure. The parents are recombined (using one-cutting
point crossover) in order to obtain two offspring. The offspring are considered
for mutation which is performed by replacing some genes with randomly gener-
ated values. The best offspring O replaces the worst individual W in the current
population if O is better than W.

The Micro-level Algorithm.The micro level algorithm is a modified Particle
Swarm Optimization algorithm [16] used for computing the fitness of a GA
individual from the macro level.

S1 Initialize the swarm of particles randomly
S2 While not stop condition
S3 For each gene of the GA chromosome

S31 Compute fitness of the particle specified by the current gene of the GA
chromosome

S32 Update pBest if the current fitness value is better than pBest
S33 Determine nBest for the current particle: choose the particle with the

best fitness value of all the neighbors as the nBest
S34 Calculate particle’s velocity according to eq. 1
S35 Update particle’s position according to eq. 2

S4 EndFor
S5 Sort particles after fitness.

vid = w ∗ vid + c1 ∗ rand() ∗ (pid − xid) + c2 ∗ rand() ∗ (pnd − xid) (1)
xid = xid + vid (2)

where rand() generates a random real value between 0 and 1.
The above algorithm is quite different from the standard PSO algorithm [16].
Standard PSO algorithm works on two stages: one stage that establishes the

fitness, pBest and nBest values for each particle and another stage that de-
termines the velocity (according to equation 1) and makes update according
to equation 1 for each particle. Standard PSO usually works with two pop-
ulations/swarms. Individuals are updated by computing the pBest and nBest
value using the information from the previous population. The newly obtained
individuals are added to the current population.
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Our algorithm performs all operations in one stage only: determines the fit-
ness, pBest, nBest and velocity values only when a particle is about to be up-
dated. In this manner, the update of the current particle takes into account the
previous updates in the current generation. Our PSO algorithm uses only one
population/swarm. Each updated particle will automatically replace its parent.

3 Experiments

Numerical experiments for evolving a PSO algorithm for function optimization
are performed in this section. The obtained PSO algorithm is tested against
11 difficult problems. Several numerical experiments, with a standard Particle
Swarm Algorithm [16] are also performed. Finally the results are compared. We
evolve the structure of a PSO algorithm and then we asses its performance by
comparing it with the standard PSO algorithm.

3.1 Test Functions

Eleven test problems are used in order to asses the performance of the evolved
EA. Functions f1 − f6 are unimodal test function. Functions f7 − f10 are highly
multi modal (the number of the local minimum increases exponentially with
problem’s dimension [17]). Functions f1−f10 are given in Table 1. Function f11

corresponds to the constrained portfolio optimization problem.

The Portfolio Selection Problem. Modern computational finance has its
historical roots in the pioneering portfolio theory of Markowitz [10]. This theory
is based on the assumption that investors have an intrinsic desire to maximize
return and minimize risk on investment. Mean or expected return is employed
as a measure of return, and variance or standard deviation of return is employed
as a measure of risk. This framework captures the risk-return tradeoff between
a single linear return measure and a single convex nonlinear risk measure. The
solution typically proceeds as a two-objective optimization problem where the
return is maximized while the risk is constrained to be below a certain threshold.
The well-known risk-return efficient frontier is obtained by varying the risk target
and maximizing on the return measure.

The Markowitz mean-variance model [10] gives a multi-objective optimiza-
tion problem, with two output dimensions. A portfolio p consisting of N assets
with specific volumes for each asset given by weights wi is to be found, which
minimizes the variance of the portfolio:

σp =
N∑

i=1

N∑
j=1

wiwjσij (3)

maximizes the return of the portfolio:

μp =
N∑

i=1

wiμi subject to:
N∑

i=1

wi = 1, 0 ≤ wi ≤ 1, (4)



Evolving the Structure of the Particle Swarm Optimization Algorithms 31

Table 1. Test functions used in our experimental study. The parameter n is the space
dimension (n = 5 in our numerical experiments) and fmin is the minimum value of the
function. All functions should be minimized.

Test function Domain fmin

f1(x) =
n∑

i=1

(i · x2
i ). [-10, 10]n 0

f2(x) =
n∑

i=1

x2
i . [-100, 100]n 0

f3(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi|. [-10, 10]n 0

f4(x) =
n∑

i=1

(
i∑

j=1

xj

)2

. [-100, 100]n 0

f5(x) = maxi{xi, 1 ≤ i ≤ n}. [-100, 100]n 0

f6(x) =
n−1∑
i=1

100 · (xi+1 − x2
i )

2 + (1 − xi)2. [-30, 30]n 0

f7(x) = 10 · n +
n∑

i=1

(x2
i − 10 · cos(2 · π · xi)) [-5, 5]n 0

f8(x) = −a · e−b

√√√√ n∑
i=1

x2
i

n − e

∑
cos(c·xi)

n + a + e. [-32, 32]n

a = 20, b = 0.2, c = 2π.
0

f9(x) = 1
4000

·
n∑

i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1. [-500, 500]n 0

f10(x) =
n∑

i=1

(−xi · sin(
√|xi|)) [-500, 500]n -n∗ 418.98

f11 = The Portfolio Selection Problem [0, 1]n 0

where i = 1...N is the index of the asset, N represents the number of assets
available, μi the estimated return of asset i and σij the estimated covariance
between two assets. Usually, μi and σij are to be estimated from historic data.
While the optimization problem given in (3) and (4) is a quadratic optimization
problem for which computationally effective algorithms exist, this is not the case
if real world constraints are added. In this paper we treat only the cardinality
constraints problem.

Cardinality constraints restrict the maximal number of assets used in the
portfolio

N∑
i=1

zi = K, where zi = sign(wi). (5)

Let K be the desired number of assets in the portfolio, εi be the minimum
proportion that must be held of asset i, (i = 1, ..., N) if any of asset i is held, δi

be the maximum proportion that can be held of asset i, (i = 1, ..., N) if any of
asset i is held, where we must have 0 ≤ εi ≤ δi ≤ 1(i = 1, ..., N). In practice, εi

represents a “min-buy” of “minimum transaction level” for asset i and δi limits
the exposure of the portfolio to asset i.
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εizi ≤ wi ≤ δizi, i = 1, ..., N (6)
wi ∈ [0, 1], i = 1, ..., N. (7)

Equation (5) ensures that exactly K assets are held. Equation (6) ensures
that if any of asset i is held (zi = 1) its proportion wi must lie between εi and
δi, whilst if none of asset is held (zi = 0) its proportion wi is zero. Equation (7)
is the integrality constraint.

The objective function (equation (3)), involving as it does the covariance
matrix, is positive semi-definite and hence we are minimizing a convex function.

The chromosome representation (within a GA algorithm) supposes (conform
to [2]) a set Q of K distinct assets and K real numbers si, (0 ≤ si ≤ 1), i ∈ Q.

Now, given a set Q of K assets, a fraction
∑

j∈Q εj of the total portfolio is
already accounted for and so we interpret si as relating to the share of the free
portfolio proportion (1−∑j∈Q εj) associated with asset i ∈ Q.

So, our GA chromosome will encode real numbers si and the proportion of
asset i from Q in portfolio will be:

wi = εi +
si∑

j∈Q sj
(1−

∑
j∈Q

εj) (8)

For this experiment we have used the daily rate of exchange for a set of assets
quoted to Euronext Stock [6].

Experiment 1. The structure of a PSO algorithm is evolved in this experiment.
We use function f1 as training problem.

For GA we run during 50 generations a population with 50 individuals, each
individual having 10 genes. We perform a binary tournament selection, one
cutting point recombination (applied with probability 0.8) and weak mutation
(applied with probability 0.1). The parameters of the PSO algorithm (micro
level) are given in Table 2. The SwarmSize is not included in this table because
different PSOs may have different number of particles. However, the number of
function evaluations/generation is equal to 10 for all evolved PSO.

Our algorithm uses a randomized inertia weight, selected in the spirit of
Clerc’s constriction factor [3], [5] (many reports use a linearly decreasing in-
ertia weight which starts at 0.9 and ends at 0.4, but we want to not restrict our

Table 2. The parameters of the PSO algorithm (the micro level algorithm) used for
computing the fitness of a GA chromosome

Parameter Value

Number of generations 50
Number of function evaluations/generation 10
Number of dimensions of the function to be optimized 5
Learning factor c1 2
Learning factor c2 1.8
Inertia weight 0.5 + rand() / 2
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inertia to a fix model: decreasing or increasing function). Learning factors are not
identical. Initial we have used same values for this parameters, but recent work
[1] reports that it might be even better to choose a larger cognitive parameter,
c1, than a social parameter, c2, but with c1 + c2 < 4.

We performed 50 independent runs for evolving order for particles. The results
obtained in one of the runs (randomly selected from the set of 50 runs) are
presented in Figure 1.

Different orders of particles have been evolved. Two of these orders are rep-
resented by the chromosomes: C1 = (1112020113) and C2 = (1502033043). The
second chromosome (C2) will be used in the numerical experiments performed
in the next section.
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Fig. 1. The evolution of the fitness of the best/worst GA individual, and the average
fitness (of all GA individuals in the population) in a particular run

Experiment 2. For assessing the performance of the evolved PSO we will com-
pare it with a standard PSO algorithm. For this comparison we use the test
functions given in Table 1.

In order to make a fair comparison we have to perform the same number
of function evaluations in both evolved PSO and standard PSO. The evolved
PSO has 6 particles, but because some of them are updated more times, it will
perform 10 function evaluations / generation (it means that in each generation
will be processed 10 updates - some particles will be updated more times). The
standard PSO [16] has 10 particles and thus it will perform 10 function evalu-
ations/generation (for standard PSO each particle will be updated one time -
10 updates in total). The other parameters of the standard PSO are similar to
those used by the evolved PSO and are given in Table 2.

Taking into account the averaged values we can see in Table 3 that the evolved
PSO algorithm performs better than the standard PSO algorithm in 7 cases
(out of 11). When taking into account the solution obtained in the best run,
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Table 3. The results obtained by the evolved PSO algorithm and the standard PSO
algorithm for the considered test functions. Best/Worst stands for the fitness of the
best individual in the best/worst run. The results are averaged over 500 runs.

Func- Evolved PSO Standard PSO
tions Worst Best Mean StdDev Worst Best Mean StdDev

f1 2.717 0.001 0.526 0.723 7.123 0.282 2.471 1.517
f2 3.413 0.070 0.757 0.718 3.908 0.077 1.495 0.995
f3 2.332 0.340 1.389 0.638 1.639 0.395 0.846 0.344
f4 632.667 5.549 151.433 134.168 547.968 2.360 81.114 127.010
f5 3.106 0.457 0.766 0.410 9.298 0.457 1.278 1.268
f6 1883.010 11.585 281.541 407.174 1625.180 4.254 88.371 230.074
f7 23.295 6.790 12.766 4.884 29.973 5.743 15.619 5.084
f8 3.639 0.165 1.601 1.248 3.491 0.469 1.960 0.681
f9 13.987 8.749 11.911 1.252 41.282 3.233 18.044 9.370
f10 -773.118 -910.367 -853.202 30.990 -512.661 -1563.899 -880.475 207.074
f11 3.412 0.001 0.785 1.168 3.689 0.180 1.285 0.801

the evolved PSO algorithm performs better than the standard PSO algorithm
in 5 cases (out of 11) and tied in 1 case. When taking into account the solution
obtained in the worst run, the evolved PSO algorithm performs better than the
standard PSO algorithm in 7 cases.

We have also compared the evolved PSO to another PSO algorithm that up-
dates all particles one by one (i.e. the order of update is 0, 1, ... SwarmSize−1).
In 9 cases the evolved PSO performed better (on average) than the other
algorithm.

In order to determine whether the differences between the evolved PSO al-
gorithm and the standard PSO algorithm are statistically significant, we use
a t-test with a 0.05 level of significance. Before applying the T-test, an F-test
has been used for determining whether the compared data have the same vari-
ance. The P-values of a two-tailed T-test with 499 degrees of freedom are given
in Table 4. Table 4 shows that the differences between the results obtained by
standard PSO and by the evolved PSO are statistically significant (P < 0.05) in
9 cases (out of 11).

Table 4. The results of F-test and T-test

Functions F-test T-test Functions F-test T-test

f1 7.40E-07 5.13E-13 f7 7.80E-01 2.58E-03
f2 2.43E-02 2.41E-05 f8 4.06E-05 3.87E-02
f3 3.14E-05 3.63E-07 f9 4.13E-30 6.64E-06
f4 7.03E-01 4.18E-03 f10 8.55E-28 1.80E-01
f5 5.76E-13 3.90E-03 f11 9.57E-03 7.12E-03
f6 1.06E-04 2.17E-03
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4 Conclusion and Further Work

A new hybrid technique for evolving the structure of a PSO algorithm has been
proposed in this paper. The model has been used for evolving PSO algorithms
for function optimization. Numerical experiments have shown that the evolved
PSO algorithm performs similarly and sometimes even better than the standard
PSO algorithm for the considered test functions.

Note that according to the No Free Lunch theorems [18] we cannot expect to
design a perfect PSO which performs the best for all the optimization problems.
This is why any claim about the generalization ability of the evolved PSO should
be made only based on some numerical experiments.

Further work will be focused on: finding patterns in the evolved structures.
This will help us design PSO algorithms that use larger swarms, evolving better
PSO algorithms for optimization, evolving PSO algorithms for other difficult
problems.
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Abstract. In this paper a tabu search algorithm is proposed for the optimization 
of constrained gas distribution networks. The problem consists in finding the 
least cost combination of diameters, from a discrete set of commercially avail-
able ones, for the pipes of a given gas network, satisfying the constraints related 
to minimum pressure requirements and upstream pipe conditions. Since this is a 
nonlinear mixed integer problem, metaheuristic approaches seem to be more 
suitable and to provide better results than classical optimization methods. In this 
work, a tabu search heuristics is applied to the problem and the results of the 
proposed algorithm are compared with the results of a genetic algorithm and 
two other versions of tabu search algorithms. The results are very promising, 
regarding both quality of solutions and computational time. 

1   Introduction 

Gas distribution networks are a very important part of cities infrastructure, serving 
both houses and industries, and usually imply an enormous cost for their implementa-
tion. For such reasons, many companies which provide this kind of service need to 
use computational tools in order to determine the best design for such networks. The 
design involves the definition of a layout for the network and the dimensioning of 
pipes. To define the layout, one has to take into account a number of factors such as 
the streets, topology, environmental risks, economics and network reliability. Once  
a layout is defined, then the sizes of the diameters of the pipes to be laid have to be 
determined. 

Pipes are produced and commercialized only in a certain number of materials and 
in certain fixed diameters. Their costs per unit of length usually vary with the kind of 
material they are made of and with diameters. For larger diameters, more expensive 
pipes are expected. Pressure also drops along the pipes in a decreasing rate with larger 
diameters for a constant flow, meaning that larger diameters imply in more reliable 
networks, with better guarantee of demand supply. 

In this paper, it is assumed that a layout is previously defined. Thus the goal is to 
select the diameters of the pipes such that they are large enough to guarantee that de-
mand requirements are met and the overall cost of pipes is minimized. An additional 
constraint is that each pipe, not incident to a source node, should have at least one up-
stream pipe of the same or greater diameter. Given a layout for the network, the  
objective is to minimize the sum of the costs of the pipes. In this paper fixed tree 
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structures are considered for the network layout and the term “pipe” can be utilized to 
refer to an arc between two nodes of a given tree. Although the assumption of tree-
like structures is made, the proposed method applies to looped distribution networks 
as well. 

The henceforth denominated pipe dimensioning problem is formulated as a con-
strained optimization problem. Since restrictions are implicit and observe non-linear 
equations, the feasibility of a solution may only be determined by solving the flow 
equations of the network. For such reasons, analytical investigation and exact compu-
tational methods seem not to be promising on solving this kind of problem and the use 
of metaheuristics is the natural alternative for dealing with it.  

Next section presents a short review of previous works on problems related to dis-
tribution networks optimization. A mathematical formulation of the pipe dimension-
ing problem as a mixed integer non-linear optimization problem is then given in the 
following section. Section 4 introduces some basic concepts of tabu search algo-
rithms. Details of the proposed algorithm are presented in section 5. Section 6 shows 
the computational results obtained by the new approach and the last section summa-
rizes the main contributions of this work. 

2   Previous Works on Related Problems 

In one of the earliest investigations of a related problem, Rothfarb et al. [10] explored, 
among other design issues of gas distribution networks from offshore fields to by-
products separation plants, the problem of selection of pipe diameters. Their goal was 
to minimize the sum of investment and operational costs. On that paper, the consid-
ered networks were those which contain the fewest number of pipelines that can de-
liver gas from the fields to the separation plants or, in other words, networks with 
fixed tree structures.  

Boyd et al. [1] developed a genetic algorithm for the pipe dimensioning problem 
and used a penalty function to take both the minimum pressure and upstream pipe re-
strictions in account. The solutions were represented by a sequence of n integers, 
where n is the number of pipe segments (arcs) in the network, each integer indicating 
the index of the diameter to be chosen for a given pipeline. This representation allows 
all the search space to be coded and eases the use of genetic operators, like the creep 
mutation and the uniform crossover, both utilized in the genetic algorithm. An un-
structured population of 100 networks was used through 100 generations and allowed 
the authors to report a 4% better result for a 25 pipes real instance when compared to 
a heuristic utilized by the British Gas company. The latter heuristic is simple and 
serves as a basic idea for other methods proposed to solve the problem. It consists in 
guessing some initial pipe sizes which lead to a valid network and locally optimize 
the current solution repeatedly trying to reduce the diameter of one of the pipes until 
no further reduction can generate a still feasible solution. 

The COMOGA method (Constrained Optimization by Multi-Objective Genetic 
Algorithms) [11] treats the constraints of the problem, either explicit or implicit, as a 
separate criterion in a multi-objective formulation of the problem. The method has the 
advantage of diminish the number of free parameters to be tuned when compared with 
the traditional penalty function formulation and to remain low sensitive to these. It 



 A Tabu Search Algorithm for Optimization of Gas Distribution Networks 39 

consists in reducing the problem to a bi-criterion one, condensing all the constraints in 
a single criterion. By calculating a Pareto ranking for each solution of the population 
(number of solutions which dominate it) regarding the level of violation of all the 
original constraints, the method minimizes both the cost and the degree of unfeasibil-
ity of solutions through a reverse annealing scheme that adjust the probability of se-
lecting and replacing individuals of the population according to one (cost) or another 
criterion (feasibility). The authors argue that the COMOGA method needs considera-
bly less experimentation and is much less sensitive to the parameters involved in  
its design. 

In the same year, Osiadacz and Góreki [8] present a reasonably comprehensive 
survey of the optimization of both water and gas distribution networks by means of 
heuristic methods, exact procedures which consider the availability of continuous di-
ameters, and discrete optimization methods. They propose to solve the problem with 
the use of an iterative method which minimizes at each step a quadratic approxima-
tion to a lagrangian function subject to sequentially linearized approximations to  
the constraints. After all, diameters are corrected to the closest available discrete  
diameter size. 

On another line of investigation, Boyd et al. [2] study the fuel cost minimization 
problem and generate useful lower bounds to evaluate the quality of the solutions 
provided by the pipeline optimization algorithms. A study of the solution space and 
objective function is carried out, however the specific problem they deal with is more 
concerned about the compressor stations fuel minimization and the developed lower 
bounds don’t directly apply to the pipe dimensioning problem. 

Distribution networks composed basically of pumps and pipes (once accessories 
can be modeled only by its diameters) are considered in the paper of Castillo and 
González [3]. The decision variables are then defined to be pumps Q-H characteristics 
(pressure and flow rates) and pipes and accessories diameters, taken from a discrete 
commercial set of available diameters. A formulation of the problem is presented in 
which the velocity of the flow comprehends the most important constraint and a ge-
netic algorithm with specialized crossover operators is proposed. Their genetic algo-
rithm also makes use of a penalty function to disfavor unfeasible solutions, adding up 
the highest possible cost of each element of the network on which the constraints are 
violated. They apply the procedure to two theoretical test cases and to a real one aris-
ing from activities of a dairy products company. The problem-specific genetic opera-
tors demonstrate to be better in practice than the standard ones. 

Finally, Cunha and Ribeiro [6] propose a tabu search algorithm to find the least-
cost design of looped water distribution networks. Even dealing with a different kind 
of fluid to be distributed, the mathematical structure of this problem is identical to the 
gas distribution networks optimization problem, including the concern with similar 
minimum design pressure and upstream pipe constraints. Besides providing a vast 
survey on previous approaches to the problem, the suggested algorithm seems to be 
both simple and effective to tackle this optimization problem. It starts from a trivial 
feasible solution where all pipes are set to the largest available diameter and for each 
successive step it decreases the diameter of one of the pipes, while maintaining the 
feasibility of the current solution with respect to all the constraints. When the algo-
rithm finds a solution where no additional diameter decrease leads to a still feasible 
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solution, it makes a diversification move by increasing the diameter of one of the 
pipes, selected according to one of the following criteria: 

• the pipe whose diameter is increased is the one that presents the lowest value of a 
parameter given by multiplying the number of changes in the diameter of the pipe 
during the search procedure by the number of times that the pipe was ascribed the 
increased diameter; 

• the chosen pipe is the one which size has maintained the same diameter for the 
longest period in previous iterations. 

These criteria define two different versions of the algorithm, called TS1 and TS2, 
respectively. In either case, the modification of the size of the pipe whose diameter 
has been changed becomes a tabu move and enters the tabu list. The authors experi-
ment different fixed and variable tabu tenure parameters and, comparing their algo-
rithms results to best known solutions of five benchmark instances of the problem, 
they demonstrate the effectiveness of the proposed method. 

3   Mathematical Model Formulation 

The pipe dimensioning problem can be stated as follows: to select, from a discrete set 
of commercially available pipe diameters, the combination of diameters that gives the 
least cost network able to supply a set of demand nodes with at least a minimum de-
sign pressure and satisfying pipe upstream conditions. The corresponding model can 
be written as: 

∈

⋅
NPk

kk LDc )(min  (1) 

subject to: 

}{, 0nNiPDP ii −∈∀≥  

 

(2) 

NPkDUD kk ∈∀≤ ,  (3) 

NPkDDk ∈∀∈ ,  (4) 

where NP is the pipe set, N is the node set, with n0 representing the gas source, D is 
the set of commercial diameters, Dk is the diameter of the pipe k, taken as the decision 
variables, Lk is the length of pipe k, +ℜ→Dc :  is a function from the set of diame-
ters to positive real numbers which represents the cost of the pipe per unit of length, 
Pi is the pressure obtained on node i for the assigned pipes diameters, PDi is the re-
quired pressure on node i, and DUk is the diameter of the upstream pipe of pipe k. 

The objective function (1) represents the minimization of total gas distribution net-
work cost, expressed as the sum of the costs of each pipe section which compose it. 
The pipe cost, by its turn, is a function of the pipe diameters (taken as the decision 
variables) and the length of the section. 
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The set of constraints (2) represents the minimum design pressure requirements on 
each node. They can only be verified by the successive solution of the non-linear 
equation in (5) for obtaining the pressure drop since the source for each pipe section. 
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where Q is the flow rate, C is a constant for systems of units conversion, Tb is the base 
temperature, Pb is the base pressure, D is the diameter of the pipe, e is the pipe effi-
ciency, P1 and P2 are the input and output pressure, respectively, L is the length of the 
pipe, G is the gas specific gravity, Ta is the gas temperature, Za is the gas compressi-
bility factor and f is the friction factor of the pipe. 

The set of constraints (3) indicates the upstream pipe conditions, meaning that each 
pipe must have a diameter less than or equal to the diameter of its upstream pipe. 
Once the networks we are considering in this paper have fixed tree structures, the up-
stream pipe can be easily determined as the only one which directly connects to the 
given pipe and is closer to the source node. If looped distribution networks were con-
sidered, flow equations would have to be solved to determine flow directions and the 
upstream pipes. Finally, the constraints in (4) restrict the possible diameters of the 
pipes to the commercially available ones. 

4   Tabu Search Algorithms 

Among the numerous metaheuristic methods proposed in the past few decades for the 
solution of complex optimization problems, tabu search distinguishes as a successful 
heuristic in many fields of application. Its main features lay down on analogies to the 
human memory process and are fully explained by Glover and Laguna [7]. 

The tabu search method proposes to iteratively search the neighborhood of the cur-
rent solution in such an ordering that allows the best moves to be explored and at the 
same time prevents the repetition of previously visited solutions. To achieve this goal 
a certain neighborhood structure and a function to generate neighbor solutions (by 
means of structured moves) have to be defined. The exploration of the neighborhood 
can be done entirely or restricted to a certain number of solutions. 

A further part of tabu search functionality is preventing from repeatedly visiting 
the same solution. This is done by setting some possible moves to tabu status, mean-
ing that they cannot be executed for a number of iterations. It can avoid cycling on 
visited solutions. Moreover the tabu tenure parameter defines the number of iterations 
the elements added to a tabu list maintain their tabu status, making the search more or 
less restrictive. A tabu search implementation may or may not make use of an aspira-
tion criterion. This criterion allows a tabu move to be done in a given iteration if it 
will lead to a solution that satisfies some condition, e.g. if the new solution is better 
than any of the previously encountered solutions. 

Eventually the search will lead to a local optimal solution and no move will be able 
to bring improvements to the process. In such cases, the algorithm shall use a diversi-
fication procedure which will permit the exploration of regions of the search space 
that haven’t been considered yet. The ability of determining those unexplored regions 
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is supported by the use of long term memory structures that keep register of the al-
ready visited vicinities. Finally the search is concluded when some termination crite-
ria are achieved. It’s evident that this metaheuristic technique incorporates strategies 
for efficiently avoiding local optima while keeping the implementation fairly simple 
and this can partially explains the popularity of the method. 

5   Algorithm Implementation 

In this work, we propose a tabu search algorithm for the solution of the pipe dimen-
sioning problem. The implementation considers only feasible networks, which means 
that moves never generate solutions that violate the problem constraints. It simplifies 
the objective function in the sense that there is no need of a penalty function. The goal 
is to minimize the total cost of the pipes of a gas distribution network. 

This section describes the basic features involved in the implementation of the pro-
posed algorithm, such as: the initial solution, the neighborhood exploration (including 
the neighbor generation move, the diversification procedure, the aspiration criterion, 
the tabu moves and the tabu tenure parameter), and termination criteria. A pseudo-
code of the described algorithm is presented in the following. 

Pseudo-code of the proposed algorithm 

curr_sol = generate_initial_sol (); 

tabu_list = {}; 

repeat 

 if (no diameter decrease is possible) then 

  curr_sol = diversification (curr_sol); 

 else 

  new_sol = decrease_diameter (curr_sol); 

  if (reduced pipe is not tabu or 

    aspiration criterion holds) then 

    curr_sol = new_sol; 

 end_if 

 for each pipe i in tabu list 

  alpha = random value between 0.0 and 1.0; 

  if (alpha < p) remove pipe i from tabu list; 

 end_for 

 insert last reduced pipe in tabu list; 

until termination criteria are accomplished 
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5.1   Initial Solution 

Once we are concerned in maintaining the feasibility of solutions through all the itera-
tions, it is necessary to consider a method to generate initial solutions that guarantees 
the satisfaction of pressure and upstream requirements. Therefore, the strategy 
adopted in this work was to utilize the safest possible network (though the most ex-
pensive) as the initial solution. This network is the one where the largest possible  
diameter is assigned to each pipe. This strategy brings the extra benefit of being able 
to determine on the very beginning whether the instance has or not a single solution. 
If the proposed initial solution is infeasible, no other solution will be. A randomized 
initial solution would not be adequate because the density of feasible solutions in the 
search space is extremely low and it could take a large computational time to ran-
domly find one of them. 

5.2   Neighbor Generation Moves 

To detail how the algorithm explores the neighborhood of the current solution, the 
underlying neighbor generation move is explained. First, consider that the solutions 
are represented as a list of pipes and corresponding diameters, ordered by depth of in-
cident nodes. The basic move consists in decreasing pipe diameters to the minimum 
possible value keeping the feasibility of the solution. It is done from the leaves up to 
the root of the tree to favor the observance of upstream restrictions. The bottom-up 
style of pipe reductions may allow that the decrease of a pipe diameter enables its up-
stream pipe to have its diameter reduced too. However, due to the complexity of the 
constraints involved, the pressure at each node has to be recalculated for every diame-
ter reduction to ensure that the network is still meeting the requirements. 

5.3   Diversification Procedure 

When a solution is found for which no pipe diameter reduction is possible, a local op-
timum was reached. To proceed with the search, the diversification procedure is  
applied. The neighbor solution is then generated by increasing pipe diameters. A ran-
dom pipe (whose diameter is not the largest available one) is selected and its diameter 
is increased to the next available size. This move always keeps the network valid re-
garding the pressure constraints, but may cause the selected pipe to violate the up-
stream requirement. This is easily fixed by recursively increasing the diameter of the 
upstream pipe of the altered pipes while necessary. 

5.4   Tabu Moves and Aspiration Criterion 

Either if the pipe diameter is decreased or increased, the branch which diameter was 
changed receives a “tabu” status. Then, the modification of its diameter is prohibited 
for a certain number of iterations. The tabu tenure parameter is implemented to be 
randomized. For all iteration each move has a probability p of leaving the tabu list. 
Some experimentation was carried out and a value of p=0.05 showed to be effective 
for the studied problem. This value was used in all tests we report in this paper. Also, 
an aspiration criterion was utilized to allow a tabu status to be removed if the corre-
spondent move leads to a new best solution. 
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5.5   Termination Criteria 

Two termination criteria were used: a maximum runtime and a maximum number of 
iterations without improvement of the best solution. Let n be the number of pipes in a 
given instance. The maximum time allowed for the tabu search algorithm execution in 
computational experiments was n seconds. The maximum number of iterations with-
out improvement of the best solution was 2n. It can be verified on the following sec-
tion through the tests carried out that in general the second criterion was the one 
which interrupted the search. 

6   Computational Experiments and Results 

For purposes of validation of the proposed algorithm, it was applied to 58 theoretical 
instances with sizes varying from 51 to 1432 nodes and, consequently, from 50 to 
1431 pipe sections. These instances are based on instances of the TSPLIB – a travel-
ing salesman problem bank of instances [9] – and have been generated as follows. 
First, the minimum spanning tree of the complete graph obtained from the TSP  
instances was calculated, the first node fixed as the source node. Then, values for flow 
on each pipe and minimum pressure required by each node were randomly generated 
in a previously defined range. Finally, a set of commercial diameters was chosen from 
real-world available ones [4][5]. Each instance of the pipe dimensioning problem is 
referred to with the same name of the TSP instance that originated it. 

The two versions of the tabu search algorithm from Cunha and Ribeiro [6] and 
the multi-objective genetic algorithm from Surry et al. [11] were applied to the 
problem – maintaining all their basic features unchanged. The proposed algorithm 
is compared with them. The termination criteria for these algorithms was set to be 
same as the proposed algorithm, a maximum time of n seconds and a maximum of 
2n iterations without improvement of the best already found solution, where n is 
the number of nodes of the instance. For every instance, 30 independent runs of the 
algorithms were done on a Pentium IV 2.8 GHz computer with 512MB of RAM, 
except for the genetic algorithm on instances with more than 1000 nodes, for the 
reasons explained below. 

Table 1 shows the results the algorithms obtained for the smaller instances (less 
than 1000 nodes). The best encountered solution by any of the tested algorithms for 
each instance along with the minimum and average gap in percentage and the stan-
dard deviation of the gap for each algorithm is presented. 14 small easy instances (up 
to 264 nodes) are omitted since all the methods achieved the same results. Only the 
results of TS1 [6] are shown because the performance of the second version was infe-
rior to it. TS2 was able to find a cheaper solution than TS1 for only 1 instance and its 
running time was equal to or worse than TS1 running time in 55 of the cases. The ge-
netic algorithm [11] didn’t find any feasible solution for pr299 or u724 instances. 
Proposed TS stands for the proposed algorithm while TS-C and GA-S refer to the 
compared tabu search [6] and genetic algorithm [11], respectively. 
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Table 1. Solutions quality comparison for 34 small and medium networks 

Proposed TS TS-C GA-S Instance Best Sol. 
Min. 
Gap 

Avg. 
Gap 

SD 
Gap 

Min. 
Gap 

Avg. 
Gap 

SD 
Gap 

Min. 
Gap 

Avg. 
Gap 

SD 
Gap 

pr76 913473.10 0.00 0.00 0.00 0.00 0.00 0.00 3.50 4.56 0.58 
kroA100 193351.60 0.00 0.00 0.00 0.00 0.00 0.00 2.65 4.43 0.95 
kroE100 197996.90 0.00 0.00 0.00 0.00 0.00 0.00 1.23 2.52 1.45 
lin105 134466.50 0.00 0.00 0.00 0.00 0.00 0.00 5.05 5.98 0.74 
pr107 392422.10 0.00 0.00 0.00 0.00 5.09 27.88 0.34 0.94 0.23 
pr124 532125.00 0.00 0.00 0.00 0.00 0.00 0.00 8.06 11.06 2.36 
bier127 975471.80 0.00 0.00 0.00 0.00 0.00 0.00 0.79 1.54 1.07 
pr136 932218.70 0.00 0.00 0.00 0.00 0.00 0.00 5.05 7.54 1.58 
pr144 539456.30 0.00 0.00 0.00 0.00 5.40 29.57 5.62 9.10 1.50 
kroA150 253311.10 0.00 0.00 0.00 0.00 6.64 5.14 12.73 18.45 3.73 
kroB150 234850.30 0.00 0.00 0.00 0.00 0.00 0.00 2.02 2.92 0.64 
pr152 658830.80 0.00 0.00 0.00 0.00 14.38 11.13 9.14 12.51 3.09 
u159 391681.80 0.00 0.00 0.00 0.00 0.00 0.00 8.05 12.21 3.20 
d198 128528.90 0.00 0.00 0.00 0.00 0.00 0.00 5.49 8.54 2.37 
kroA200 274397.80 0.00 0.00 0.00 0.00 0.00 0.00 5.29 8.42 3.13 
kroB200 273240.10 0.00 0.00 0.00 0.00 0.00 0.00 4.47 8.25 2.40 
ts225 1198600.00 0.00 0.00 0.00 0.00 5.67 31.08 7.83 23.82 11.55 
tsp225 36647.40 0.00 0.00 0.00 0.00 0.00 0.00 3.98 4.83 0.49 
pr226 763475.40 0.00 0.00 0.00 0.00 0.00 0.00 14.71 25.60 6.73 
gil262 21516.70 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.48 0.23 
a280 25080.50 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.50 0.11 
pr299 479309.90 0.00 0.00 0.00 5.25 5.25 0.00 - - - 
lin318 405353.80 0.00 0.00 0.01 0.55 8.64 3.68 7.09 19.90 13.04 
rd400 140256.80 0.15 0.15 0.00 0.15 0.15 0.00 0.00 1.47 5.03 
fl417 107799.80 0.00 0.00 0.00 0.00 0.00 0.00 5.46 7.83 1.66 
pr439 1053042.50 0.00 0.09 0.15 0.02 21.02 7.12 59.34 59.34 0.00 
pcb442 504545.90 0.00 0.00 0.00 0.00 0.49 1.85 35.98 35.98 0.00 
d493 331245.30 0.00 0.00 0.00 27.20 27.20 0.00 60.83 60.83 0.00 
u574 348626.20 0.00 0.00 0.02 8.24 8.24 0.00 42.62 42.62 0.00 
rat575 65209.40 0.00 0.00 0.00 0.00 0.00 0.00 6.45 8.21 0.46 
p654 361242.50 0.00 0.43 0.11 26.76 27.13 2.03 48.40 48.40 0.00 
d657 460791.80 0.00 0.02 0.11 5.73 10.28 24.61 67.83 67.83 0.00 
u724 414143.80 0.00 0.00 0.01 10.55 10.55 0.00 - - - 
rat783 86522.50 0.00 0.00 0.00 3.56 3.56 0.00 38.98 38.98 0.00 

The effectiveness of the proposed algorithm is clearly demonstrated in this table. 
Our tabu search finds the best solution for all but one instance (rd400), for which the 
solution found was only 0.15% above the genetic algorithm solution. Besides, for the 
four instances in which the best solution was not found in all executions, the average 
gap didn’t reached 0.5%. On the other hand, Cunha and Ribeiro tabu search algorithm 
[6] also showed a consistent performance, but wasn’t able to find the best known so-
lution in 8 instances and its average gap was worse than the average gap of the pro-
posed algorithm for 15 of these instances. The results also indicate that TS-C  
performance is superior to GA-S, once that for only 2 instances the former presented 
an average gap worse than the latter and GA-S found only one best known solution. 

As the performance of GA-S seriously deteriorate for the last instances in Table 1, 
the proposed algorithm was only compared to the TS-C for the largest instances. 
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Table 2 shows the results these two algorithms presented for 10 instances with more 
than 1000 nodes in the same format of Table 1. It is evident that the proposed tabu 
search overcomes the reference method once it obtains the best minimum and average 
solutions for all the networks. Additionally, the robustness of the algorithm is visible 
because the average gap from the best found configuration is at most 1.83% and the 
standard deviation exceeds 1.0% for only one case. It can be seen that TS-C fails to 
obtain competitive solutions for large instances, perhaps because of its running time 
dependency and the employed termination criteria. 

Table 2. Comparison of the solutions of the 10 largest networks 

Proposed TS TS-C Instance Best Sol. 
Min. 
Gap 

Avg. 
Gap 

SD 
Gap 

Min. 
Gap 

Avg. 
Gap 

SD 
Gap 

pr1002 2662871.80 0.00 1.15 0.80 10.17 12.68 11.96 
u1060 2302421.10 0.00 1.55 0.94 11.65 19.75 22.03 
vm1084 2324953.00 0.00 1.09 0.84 11.31 12.53 6.71 
pcb1173 591012.00 0.00 1.28 0.73 30.06 41.68 20.27 
d1291 528294.10 0.00 0.69 0.73 78.77 84.34 11.24 
rl1304 2701706.20 0.00 1.83 0.75 47.15 58.57 16.07 
rl1323 3134737.40 0.00 1.15 0.70 6.53 6.53 0.00 
nrw1379 561381.10 0.00 0.25 0.28 70.30 71.09 0.46 
fl1400 202637.50 0.00 1.70 1.07 87.48 87.54 0.04 
u1432 1584001.50 0.00 0.32 0.20 113.51 114.24 0.42 

The good solutions quality presented by the proposed algorithm in previous tables 
can consistently point to its usefulness. This observation is ratified in Table 3, where 
average running time is given for each instance. Once more, the proposed algorithm 
showed good results, spending in smaller instances less than one tenth of the time 
spent by TS-C and significantly less time in the other cases. It’s relevant to note that 
the termination criterion of maximum execution time was hardly necessary for the 
proposed algorithm. However, TS-C shows poor quality results for the 12 largest in-
stances, probably because of the maximum allowed running time, which was reached 
in all executions for these instances. GA-S average running times are omitted because 
this method utilized the whole available time for all executions of all instances. 

Since a global optimal solution is not known for these problems, it is very im-
portant to evaluate different heuristic methods to find the most suitable one. 
Through the analysis carried out, the proposed tabu search algorithm demonstrates 
to be very effective in tackle the problem difficulties. Moreover, the compared al-
gorithms are of recognized value on this class of problems, so the analysis may 
state that this is in fact one adequate method for this kind of problem. It is rea-
sonably expected since tabu search approach has presented good results in other 
related problems as well, like the water distribution network optimization problem, 
studied by Cunha and Ribeiro [6]. 
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Table 3. Average running time (in seconds) 

Instance Proposed TS TS-C 
pr76 0.119 1.076 
kroA100 0.039 0.852 
kroE100 0.039 0.865 
lin105 0.043 0.895 
pr107 0.313 3.620 
pr124 0.406 4.403 
bier127 0.063 1.801 
pr136 0.494 5.736 
pr144 0.634 8.450 
kroA150 0.923 10.774 
kroB150 0.090 2.730 
pr152 0.966 9.238 
u159 0.744 7.889 
d198 1.149 17.115 
kroA200 1.027 23.772 
kroB200 1.200 38.465 
ts225 1.694 31.311 
tsp225 0.202 9.578 
pr226 2.158 17.576 
gil262 0.271 14.643 
a280 0.312 17.470 
pr299 8.923 86.404 
lin318 10.880 65.950 
rd400 1.560 49.649 
fl417 5.026 174.955 
pr439 62.854 218.321 
pcb442 16.048 213.174 
d493 18.130 354.374 
u574 36.154 504.909 
rat575 6.559 464.208 
p654 72.481 654.269 
d657 26.071 642.325 
u724 91.008 724.510 
rat783 26.242 783.501 
pr1002 557.313 1002.387 
u1060 918.610 1060.277 
vm1084 944.113 1084.526 
pcb1173 1032.390 1173.583 
d1291 456.914 1292.244 
rl1304 1227.100 1304.494 
rl1323 1291.161 1323.406 
nrw1379 1117.667 1379.547 
fl1400 462.311 1401.127 
u1432 1251.755 1433.146 



48 H. de Mélo Duarte, E.F.G. Goldbarg, and M.C. Goldbarg 

7   Conclusions 

A tabu search algorithm for the pipe dimensioning problem was proposed. Its special-
ized features allowed high quality solutions to be found in much reduced computa-
tional time. It demonstrates the capacity of the metaheuristics to deal with the  
complex constraints of this combinatorial problem. However, more experimentation is 
needed to permit a final conclusion to be drawn. 

In future works an adaptation of the parallel and serial merge method [10] will be 
investigated as part of heuristic algorithms. Other line of research will consider 
looped networks and adding new devices to the distribution model, such as pumps 
and compressors. 
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Anna I. Esparcia-Alcázar1, Lidia Lluch-Revert2, Manuel Cardós2,
Ken Sharman1, and Carlos Andrés-Romano2

1 Instituto Tecnológico de Informática,
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Universidad Politécnica de Valencia,

Camino de Vera s/n,
46022 Valencia, Spain

{mcardos, candres}@omp.upv.es, lillure@iti.upv.es

http://www.upv.es

Abstract. In this paper we address the joint problem of minimising
both the transport and inventory costs of a retail chain that is supplied
from a central warehouse. We propose a hybrid evolutionary algorithm
where the delivery patterns are evolved for each shop, while the delivery
routes are obtained employing the multistart sweep algorithm. The ex-
periments performed show that this method can obtain acceptable results
consistently and within a reasonable timescale. The results are also of a
lower cost than those obtained by other strategies employed in previous
research. Furthermore, they confirm the interest of addressing the op-
timisation problem jointly, rather than minimising separately inventory
and transport.

1 Introduction

The design of a retail chain usually involves finding a compromise between the
minimisation of the transport costs (from the central warehouse’s point of view)
and the minimisation of the inventory costs (from the shops’ point of view).
Retail chain shops are usually stocked periodically, with the inventory costs
being given by the delivery days established for every shop. Once these are
established, the transportation costs can be calculated by solving the vehicle
routing problem (VRP).

Although there is substantial literature on both transportation and inventory
management, this is not so for the joint problem1 [3]. In [4] the authors study this
problem by considering a single product controlled by an order-point system and
1 This problem arises when both the warehouse and the shops are owned by the same

company.
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a cost per unit transportation cost. In [2] an approximate analytical method for
minimizing inventory and transportation costs under known demand is developed,
based on an estimation of the travel distance. [1] analyzes production, inventory
and transportation costs in a capacitated network, yet once again transportation
costs are assumed to be proportional to the units moved. [9] focuses on a mul-
tiproduct production system on a single link. [5] presents a (s, Q)-type inventory
policy for a network with multiple suppliers by replenishing a central depot, which
in turn distributes to a large number of retailers; his paper considers transporta-
tion costs, but only as a function of the shipment size. [7] deals with an inbound
material-collection problem so that decisions for both inventory and transporta-
tion are made simultaneously; however vehicle capacity is assumed to be unlimited
so that it is solved as a traveling salesman problem (TSP). Finally, [10] presents a
modified economic ordering quantity for a single supplier-retailer system in which
production, inventory and transportation costs are all considered.

In this paper we propose a hybrid evolutionary algorithm that aims at min-
imising the sum of the inventory and transportation costs. Initially a popula-
tion of chromosomes is generated, each representing a set of delivery patterns
(and hence delivery frequencies) to shops. The inventory cost for each shop is
a function of the delivery frequency to that shop. Then for each chromosome
we employ the multistart sweep algorithm to calculate the five sets of routes
(one per working day of the week) that have minimal transportation cost. This
depends on the type of vehicle used, as well as the distances traveled. The fitness
that guides the evolutionary algorithm is calculated as the sum of the inventory
and transportation costs.

We test our algorithm on real problem data with three objectives in mind.
Firstly, we want to show that our method can be a useful tool to design stocking
up policies. Secondly, we intend to confirm whether the joint approach proposed
in[3], is more suitable than addressing the problem in two stages (first calculat-
ing a solution that provides minimum inventory costs and then the minimum
transport cost for that solution). Finally, we want to see if we can share their
conclusions as per the optimum type of vehicle to use.

The rest of the paper is laid out as follows. The problem of designing a
stocking up policy is explained in section 2; in section 2.1 previous approaches are
described, while section 2.2 lays out our evolutionary approach. The experiments
are described in section 3, where a statistical comparison is made, and finally
conclusions and further work are given in section 4.

2 Design of a Stocking Up Policy

Given a warehouse that supplies a chain of shops, we have to determine not
only the optimal frequency, f (number of days a week), with which to serve
each shop, but also what is the optimal pattern, p, for that frequency that min-
imises the cost. A pattern p represents a set of days in which the shop is served.
For each frequency and shop there is an associated inventory cost (the higher the
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frequency the lower the cost) so to obtain the total inventory cost we add up the
individual inventory costs per shop.

Once the patterns are known for all shops, the next step is to obtain the
transportation costs. For this we obtain solutions for the Euclidean VRP for
each day of the week and add up the associated costs.

We consider the following restrictions, as imposed by the customer:

– The fleet is homogeneous, so although we will consider three types of vehicles
(van, small truck and medium truck) only one type of vehicle is used per
experiment.

– The transport cost only includes the cost per km, not the time of use of the
vehicle. Nor there is a fixed cost per vehicle.

– The capacity of the vehicles is limited but the number of vehicles is unlimited.
– The load is containerised. The amount to deliver to each shop varies with

the shop and the frequency of delivery.
– No single shop can consume more than the capacity of any one vehicle, i.e.

a shop is served by one and only one vehicle.
– The shops have no time windows.
– The working day of a driver is 8 hours, including driving time and stops.
– Not all frequencies are admissible for all shops.
– Not all patterns are admissible for a given frequency.

The problem data can be found in Tables 4, 5, 6 and 7.

2.1 Previous Approaches

The number of possible delivery frequencies combinations is given by
∏N

i=1 Fi,
where N is the number of shops and Fi is the number of admissible delivery
frequencies for shop i. For our problem, this value is of the order of 5.44 · 109.
The total number of possible combinations of patterns is

∏N
j=1

∑Fi

i=1 Pij , where
Pij is the number of admissible delivery patterns for frequency i in shop j. In
our case, this value is 1.89 · 1017, which rules out exhaustive search.

In [3] the authors develop an approximate search procedure, involving partial
enumeration of solutions and solving five VRPs (one per working day of the
week) to determine the delivery patterns. For this, the algorithm employed in
[3] was the sweep, or daisy, algorithm as described in [6], but modified to sweep
both clockwise and counter-clockwise and employing multiple starting points.
This bi-directional multistart sweep, or daisy algorithm will also be used in
our experiments as a first approach to solve the VRP. It provides 2 ∗ nd sets
of routes per weekday (with nd being the number of shops to be visited on
that particular day) of which we will select the one that provides the minimal
transportation cost. The final transportation cost will be obtained by adding the
minimal costs of all five days of the week.

Drawbacks. One disadvantage of this method is the computational expense,
but as the authors point out themselves, this is not an important one, since the
calculations are done at a strategic phase and hence they’re not time-critical.
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A more relevant shortcoming is that it is a limited exploration carried out in
order to understand the shape and behaviour of the cost functions and hence it
only provides a rough approximation to the possible optima. Furthermore, from
a business point of view, it is not a practical tool to use. Clearly, some other
method must be found. The scene is then set for evolutionary algorithms.

2.2 The Evolutionary Approach

Evolutionary Set-up. We will start by generating a random population of
individuals or chromosomes representing solutions to the problem at hand. The
chromosomes are vectors of length equal to the number of shops in which the
components, or genes, are integers representing a particular pattern, out of
the set of admissible ones (see Table 5). For instance, the chromosome(
4 3 6 8 9 7 5 . . . 10 1

)
represents a solution in which shop 1 is served with pat-

tern 4, shop 2 with pattern 3 and so on. The fitness of such a chromosome, which
we intend to minimise, is calculated as the sum of the associated inventory and
transportation costs,

f = InventoryCost(e) + T ransportCost(e) (1)

To calculate the former, given the patterns for each shop, we know the asso-
ciated delivery frequency and with this we can look up the inventory cost per
shop (see Table 6). To obtain the transport cost, we run the daisy algorithm as
explained in the previous section.

Evolution proceeds employing the following operators:

– 1-point crossover : Two parents are selected and the genes of each are
swapped from the (random) crossover point to the end of the chromosome

– 2-point crossover : As above but swapping the genes between two random
crossover points

– n-point mutation : Pick a random value of n, 1 ≤ n ≤ N , and mutate n
positions in the chromosome selected randomly. The upper and lower bounds
of n are varied when the fitness has remaind unchanged for a given number
of iterations

3 Experiments

The main aim of the experiments is to show how our hybrid evolutionary algo-
rithm can be employed to design stocking up policies, and in this way demon-
strate the relevance of taking into account the inventory and transport costs
jointly. We want to show that the algorithm is robust, in that it obtains consis-
tently good results, and also that it can be done within a reasonable timescale.
Additionally, we want to see whether there is one type of vehicle that provides
significantly better results than the others.

In order to do this we run the algorithm 30 times per type of vehicle. The
termination criterion in all cases was a number of iterations equal to 5000, which
corresponds to approximately 9 minutes per run in the computers employed. The
algorithm is laid out in Figure 1.
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Fig. 1. The evolutionary algorithm employed in the experiments

Table 1. Parameters of the evolutionary algorithm. The probability of mutation and
the value of n are variable. Every 10th iteration the diversity is measured and if 80%
or more individuals are the same, they are replaced by newly created ones.

Parameters of the evolutionary algorithm

Population size 200
Selection method Tournament
Tournament size 5
Crossover operators 1 and 2-point Xover

Mutation operators n-point mutation

Mutation probability Variable from 0.2 to 1
Measure diversity every 10 iterations
Diversity preservation mechanism Restart + seeding

apply when 80% individuals are equal
Termination criterion 5000 iterations

3.1 Van

The best chromosome obtained in the 30 runs was:

chrom =
(
11 10 10 9 11 9 9 10 11 6 7 11 8 11 11 10 9 2 7 1

)
with a total cost of 13782 e, of which 11707 e are inventory and 2062 e are
transport costs.

The routes for each day of the week were:
Mon 0 13 9 4 1 0 2 3 5 8 0 7 6 15 12 14 16 0
Tues 0 19 20 11 17 0 9 4 5 8 7 0 6 10 15 12 14 0
Wed 0 14 19 16 13 0 18 9 4 1 0 2 3 5 8 0 7 6 10 15 12 0
Thurs 0 16 20 11 17 0 9 1 2 3 0 5 8 7 15 12 14 0
Fri 0 14 19 16 13 11 0 18 9 4 1 0 2 3 5 8 0 7 6 10 15 12 0

3.2 Small Truck

The optimal chromosome obtained in the 30 runs was:

chrom =
(
11 10 10 11 11 10 11 11 7 4 7 11 6 11 11 10 7 4 1 3

)
with a total cost of 13599 e , of which 11740 e are inventory and 1859 e are
transport costs. The routes for each day were:
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Mon 0 4 1 2 3 5 8 0 7 6 10 15 12 14 16 13 0
Tues 0 7 6 15 12 14 19 0 16 20 11 17 18 9 0 4 1 2 3 5 8 0
Wed 0 4 1 2 3 5 8 0 7 6 10 15 12 14 16 13 0
Thurs 0 15 12 14 19 20 11 17 0 9 4 1 5 8 7 0
Fri 0 7 6 10 15 12 14 0 16 13 11 17 18 9 0 4 1 2 3 5 8 0

These routes are also depicted in Figure 2
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Fig. 2. Optimal routes for the small truck for all weekdays

3.3 Medium Truck

The optimal chromosome was:

chrom =
(
10 10 10 10 10 10 11 6 11 8 1 11 8 8 10 8 1 3 1 1

)
with a total cost of 13715 e, of which 11760 e are inventory and 1955 e are
transport costs. The routes for each day were:
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Mon 0 18 9 4 1 2 3 5 0 7 6 10 15 12 14 16 13 0
Tues 0 15 12 14 19 20 11 17 0 4 1 2 3 5 8 7 0
Wed 0 9 4 1 2 3 5 0 7 6 10 15 12 14 16 13 0
Thurs 0 18 9 4 1 5 8 0 7 6 15 12 19 20 11 17 0
Fri 0 9 4 1 2 3 5 8 0 7 6 10 15 12 14 19 16 13 0

3.4 Comparison and Analysis

A point to make about this problem is that the inventory cost is much higher than
the transport cost. This is due to the nature of the products stocked (perfumes,
cosmetics) which have a high density value (in terms of e /m3) and also a high
inventory discount rate (around 30%). This discount rate is justified by the stock
deterioration, thefts and changes in fashion, as well as the cost of opportunity
of the capital, the renting of the premises and the cost of personnel.

Using the kruskalwallis function in MATLAB we run a Kruskal-Wallis test
on the best results obtained by all the runs to establish whether the costs with
any type of vehicle were significantly different from the others. The results of
the test are shown in Table 2.

Table 2. Results of the Kruskal-Wallis test

Kruskal-Wallis ANOVA table
Source SS degrees of freedom MS Chi-sq Prob > Chi-sq
Columns 52598.4 2 26299.2 77.07 0
Error 8143.6 87 93.6
Total 60742 89

Table 3. Summary of the best results obtained in 30 runs for the three vehicle types.
The inventory cost is always much higher than the transport cost due to the nature of
the products stocked (perfumes, cosmetics) which have a high density value (in terms
of e /m3) and also a high inventory discount rate (around 30%).

Type Transport cost (e) Inventory cost (e) Total cost
Van 2062 11707 13782
Small truck 1859 11740 13599
Medium truck 1955 11760 13715

Table 4. Vehicle data

Vehicle type Van Small Truck Medium Truck
Capacity (roll containers) 8 12 15
Transportation cost(e/Km) 0.55 0.6 0.67
Average speed 90 km/h
Unloading time 15 min
Maximum working time 8h
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Fig. 3. Comparison of the evolution of the costs during a run for each type of vehicle.
It can be noticed that the global minimum doesn’t correspond to a minimum inventory
cost, especially for the case of the small truck.
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Fig. 4. Estimation of the probability density functions of the results for each type of
vehicle, obtained with the MATLAB function ksdensity. The peaks obtained are rela-
tively narrow, especially for the case of the van; the differences between the maximum
and minimum values obtained in the 30 runs of the three experiments are never higher
that 1.3% of the median; this means the algorithm is robust, in the sense that any run
will not fall very far from the median, which is important in a business context.

Because the probability value is zero, this casts doubt on the null hypothesis
and suggests that at least one sample median is significantly different from the
others, i.e. the costs of at least one vehicle differ significantly. We then employed
a multiple comparisons procedure (the multcompare function in MATLAB) to
determine which one provided the lower cost. The results of the procedure showed
that the cost for the small truck was lower than the rest, followed by the medium
truck and the van. This can also be seen when estimating the probability density
functions (pdf), see Figure 4. This figure also provides an interesting conclusion.
When calculating the maximum width of the estimated pdf peaks, the result
is never bigger than 1.3% of the peak median. From this we conclude that the
algorithm is robust, in the sense that any run will not fall far from the median,
which is important in a business context.

When our results are compared to those obtained by [3] it can be noticed that
the costs obtained are much lower in all three cases. Furthermore, our conclusion
differs from theirs in that our preferred vehicle is always the small truck, while
in their case the best results where obtained by the van.
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Table 5. Admissible patterns per frequency. The value 1 represents that the shop
is served on that day, 0 that it isn’t. We will only consider 11 patterns out of the
31 that are possible, a restriction imposed by the customer (the retail chain). For
instance, there are no patterns of frequency 1, and only 2 patterns are admissible out
of the 5 existing of frequency 4: (Monday, Wednesday, Thursday, Friday) and (Monday,
Tuesday, Wednesday, Friday).

Pattern Freq Mon Tues Wed Thu Fri
1 2 1 0 0 1 0
2 2 1 0 0 0 1
3 2 0 1 0 1 0
4 2 0 1 0 0 1
5 2 0 0 1 0 1
6 3 1 0 1 0 1
7 3 0 1 0 1 1
8 3 0 1 1 0 1
9 4 1 0 1 1 1
10 4 1 1 1 0 1
11 5 1 1 1 1 1

Table 6. Shop coordinates, inventory cost (in e) and size of the deliveries per shop
depending on the delivery frequency. Shop number 0 corresponds to the warehouse.

Location Inventory cost Delivery size
(km) (e) (roll containers)

Shop x y 1 2 3 4 5 1 2 3 4 5
0 150 150 - - - - - - - - - -
1 126 191 871.3 725.9 701.6 671.9 650.8 9 5 3 2 2
2 130 242 862.7 718.8 694.7 665.4 644.4 9 4 3 2 2
3 157 247 854.2 711.7 687.8 658.8 638.0 9 4 3 2 2
4 124 182 845.6 704.6 680.9 652.2 631.6 9 4 3 2 2
5 153 176 837.1 697.5 674.1 645.6 625.2 9 4 3 2 2
6 202 169 828.6 690.3 667.2 639.0 618.9 9 4 3 2 2
7 163 158 806.1 668.9 630.1 614.8 611.3 7 4 2 2 1
8 164 182 791.1 656.5 618.4 603.4 600.0 7 4 2 2 1
9 114 170 776.2 644.1 606.7 592.0 588.7 7 3 2 2 1
10 231 120 761.3 631.7 595.1 580.7 577.3 7 3 2 2 1
11 97 108 746.4 619.4 583.4 569.3 566.0 7 3 2 2 1
12 173 110 731.4 607.0 571.7 557.9 554.7 7 3 2 2 1
13 137 127 716.5 594.6 560.1 546.5 543.4 6 3 2 2 1
14 164 113 701.6 582.2 548.4 535.1 532.1 6 3 2 2 1
15 180 114 686.6 569.8 536.7 523.7 520.7 6 3 2 2 1
16 138 120 671.7 557.4 525.1 512.3 509.4 6 3 2 1 1
17 113 121 670.0 555.2 523.7 512.0 513.3 5 2 2 1 1
18 37 183 663.4 549.7 518.6 507.0 508.3 5 2 2 1 1
19 155 86 656.9 544.3 513.4 502.0 503.2 4 2 1 1 1
20 98 29 650.3 538.8 508.3 496.9 498.2 4 2 1 1 1
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Table 7. Admissible frequencies per shop, as imposed by the customer (the retail
chain). Note that frequency 1 (one delivery day a week) is not admissible for any shop.

Shop
Freq. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

On a more interesting note, the optimum found does not correspond to a min-
imum inventory cost. This can be seen in Figure 3, which shows the evolution
of the global, inventory and transport costs throughout one run (chosen at ran-
dom) and for each type of vehicle. For all vehicles, but more noticeably for the
small truck, the global cost is lower by the end of the run, as should be expected.
On the other hand, the inventory cost goes through a minimum value at earlier
stages of the run, to increase by the end of it. This justifies the convenience of
handling the inventory and transport problems in a joint manner.

4 Conclusions and Future Work

We have described a hybrid evolutionary algorithm that can be successfully em-
ployed in the design of a stocking up policy for a chain of shops in a reasonable
timescale. The algorithm is robust in the sense that any run will provide results
that are not too different from the median (less than 0.65% away). We have
also established the importance of addressing the problem as the joint minimi-
sation of the inventory and transport costs, rather than tackling each problem
independently.

Future work will involve:

– More complex topologies, including more shops.
– Using real (map) not Euclidean distances, in which for instance distances

are different one way and back.
– Improving the daisy algorithm with local learning (or even employing a com-

pletely different heuristic). This is as suggested by [8] with respect to sim-
ulated annealing. For instance, in figure 2 it can be noticed that the route
for Friday can be improved by reordering shops (16, 13, 11, 17) as (13, 16,
17, 11). This reordered route is approximately 27 km shorter than the one
given by the daisy algorithm. In monetary terms and for the small truck this
represents a saving of 16.13 e . From a business point of view, the improve-
ment is too minute for the effort that would entail incorporating a learning
algorithm. However, it could be worthy if applied in a real non-Euclidean
space. Further research is necessary on this matter.
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Three-Index Assignment
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Darmstadt University of Technology,
Schlossgartenstr. 7, 64289 Darmstadt, Germany

Abstract. Constructive greedy heuristics are algorithms that try to
iteratively construct feasible solutions for combinatorial optimization
problems from the scratch. For this they make use of a greedy scoring
function, which evaluates the myopic impact of each possible element
with respect to the solution under construction. Although fast, effec-
tive, and even exact for some problem classes, greedy heuristics might
construct poor solution when applied to difficult (NP-hard) problems.
To avoid such pitfalls we suggest the approach of parametrizing the
scoring function by including several different myopic aspects at once,
which are weighted against each other. This so-called pgreedy approach
can be embedded into the metaheuristic concept of GRASP. The hybrid
metaheuristic of GRASP with a parametrized scoring function is called
parametrized GRASP heuristic (PGRASP). We present a PGRASP al-
gorithm for the axial three index assignment problem (AP3) and compu-
tational results comparing PGRASP with the classical GRASP strategy.

1 Introduction

Greedy-type construction heuristics are used in many special-purpose optimiza-
tion software packages, where a good feasible solution to a given instance of some
combinatorial problem is required after a very short amount of time (typically,
a few seconds). They construct feasible solutions from scratch by step-by-step
inserting always the best immediate, or local, solution while finding an answer
to the given problem instance. To obtain in fact good solutions, the crucial point
within every greedy algorithm is having a proper criterion that selects these local
solutions and thus is responsible for the search direction. For some optimization
problems greedy algorithms are able to find the globally optimal solution. For
example, Prim’s or Kruskal’s algorithms actually are greedy algorithms which
find a minimum spanning tree in a given graph. On the other hand, there is no
known greedy algorithm that finds a minimum Hamiltonian path, i.e., a solution
to the traveling salesman problem (TSP). The aim of this article is to extend
classical greedy construction heuristics by using parametrized scoring function,
and to embed such parametrized greedy heuristic into the GRASP framework,
in order to find better solutions in shorter time.
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1.1 The Three Index Assignment Problem

As a demonstrator example we selected the axial three index assignment problem
(AP3), which was first stated in [13] (see also [14]). It can be formulated as
follows: Given n ∈ N, three sets I := J := K := {1, . . . , n}, and associated costs
c(i, j, k) ∈ R for all ordered triples (i, j, k) ∈ I × J ×K. A feasible solution for
the AP3 is a set of n triples, such that each pair of triples (i1, j1, k1), (i2, j2, k2)
has different entries in every component, i.e., i1 �= i2, j1 �= j2, k1 �= k2. The aim
of the AP3 is to find a feasible solution S with minimal costs

∑
(i,j,k)∈S c(i, j, k).

It was shown by Garey and Johnson that AP3 is NP-hard [7].
AP3 has a lot of real-world applications. Several exact and heuristic algo-

rithms have been proposed for its solution, see Aiex et al. [1] and the references
therein. AP3 is also an example for the large class of combinatorial optimization
problems. Most of the ideas developed in this article apply not only for AP3 but
also for many other problems. Thus we now take a more general point of view,
and come back to AP3 later.

1.2 Combinatorial Optimization Problems

An instance of a combinatorial optimization problem (E,F , f) is given by a
finite basic set S, a set F ⊆ 2E of feasible solutions, and an objective function
f : F → Q. A combinatorial optimization problem (E,F , f) is called linear, if
there exists a function c : E → Q such that for all feasible solutions S ∈ F we
have f(S) =

∑
e∈S c(e). The aim of combinatorial optimization problems is to

compute a feasible solution S ∈ F that minimizes the objective function.

2 Greedy Algorithms and Extensions

We start with a discussion of the probably most simple algorithmic frame-
work to solve such combinatorial optimization problems: the constructive greedy
heuristic.

2.1 Greedy

A constructive greedy heuristic is defined as a procedure that tries to construct
a feasible solution for a given combinatorial optimization problem by stepwise
selecting the currently most promising element in E (with respect to some kind
of scoring function). For this, the following steps are iteratively repeated: In
the i-th step the element ei = argmin{si(e) < ∞ : e ∈ E} is chosen. Here
si : E → Q ∪ {∞} is the so-called i-th scoring function, which yields a score
si(e) for the selection of e ∈ E in step i. In the sequel we assume that it is
computationally easy to identify some e ∈ E that minimizes the scoring function
si. Moreover we assume a deterministic rule to break ties (in the case of more
than one element with minimal score). After the selection of element ei, i is
increased by one. The greedy algorithm terminates after at most |E| steps when
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there is no element with finite score left, i.e., si(e) = ∞ for all elements e ∈ E.
In the end, the set S := {e1, . . . , ei−1} ∈ 2E called solution, is returned.

A solution S is either feasible if S ∈ F , or infeasible otherwise. As one can
imagine the actual selection of a proper scoring function s is essential for con-
structing a greedy heuristic that leads to good feasible solutions, or, for some
hard problems, to any feasible solution at all. A feasible solution is called opti-
mal if for every other feasible solution T ∈ F we have f(S) ≤ f(T ). If a greedy
heuristic always terminates with a feasible solution it is called reliable. If a reli-
able greedy heuristic always produces optimal solutions it is called exact. Another
special case is the static greedy algorithm, where every two consecutive scoring
functions si, si+1 fulfill the property si+1(e)− si(e) ∈ {0,∞} for all e ∈ E. That
means, the scoring function is basically the same, except that some elements
from the set E are prevented from being selected in step i + 1 (and hence in
all later steps). A non-static greedy algorithm is also called adaptive. The differ-
ence between static and adaptive greedy algorithms is now demonstrated by two
well-known algorithms, Kruskal’s and Prim’s, for the construction of a graph’s
minimum weight spanning tree.

Given is an undirected, simple graph G = (V, E) with edge weights c(e) ≥ 0
for all e ∈ E. The weight of subgraph S, denoted by c(S), is the total sum of
the edge weights of the edges in ES , i.e., c(S) :=

∑
e∈ES

c(e). A spanning tree T
is an acyclic subgraph of G that connects all of the vertices of G. The minimum
weight spanning tree problem asks for a spanning tree T with minimum weight,
that is, for any other spanning tree T ′ of G we have c(T ) ≤ c(T ′).

Kruskal’s algorithm [11] is an example for an exact, static greedy algorithm.
The first scoring function is defined as s1(e) := c(e). Hence in the first step an
edge e1 ∈ E with minimum weight is selected. In general, in the i-th step, the
scoring function si is defined as

si(e) :=

⎧⎨
⎩
∞ ; e ∈ {e1, . . . , ei−1},
∞ ; subgraph {e1, . . . , ei−1, e} is cyclic,
c(e) ; otherwise.

(1)

Note that if subgraph {e1, . . . , ei, e} is cyclic, then subgraph {e1, . . . , ei, ei+1, e}
will also be cyclic. Thus if si(e) = ∞ for some e ∈ E, then also si+1(e) = ∞.
Hence we have si+1(e)− si(e) ∈ {0,∞} for all e ∈ E. A proof for the exactness
of Kruskal’s algorithm can be found in [11].

Prim’s greedy algorithm [15] on the other hand is an example for an exact,
adaptive greedy algorithm. As above, the first scoring function is defined as
s1(e) := c(e). Now in the i-th step, Prim’s algorithm uses the following scoring
function:

si(e) :=

⎧⎪⎪⎨
⎪⎪⎩
∞ ; e ∈ {e1, . . . , ei−1},
c(e) ; v ∈ ek for some k ∈ {1, . . . , i− 1},

w /∈ ek for all k ∈ {1, . . . , i− 1}, with e = {v, w},
∞ ; otherwise.

To see that a greedy heuristic based on this family of scoring functions is adap-
tive, consider the following example. Let {e1, . . . , ei−1} be the set of edges
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selected so far. Furthermore let u, v, w ∈ V be three pairwise distinct nodes
with {u, w}, {v, w} ∈ E, v ∈ ek for some k ∈ {1, . . . , i− 1} and u, w /∈ ek for all
k ∈ {1, . . . , i−1}. Then si({u, w}) = ∞. Suppose now that edge {v, w} is selected
in the i-th step. Then si+1({u, w}) < ∞. Hence si+1({u, w})−si({u, w}) = −∞,
thus the greedy algorithm is non-static. For a proof of the exactness of Prim’s
algorithm we again refer to the literature [15].

Kruskal’s scoring functions (1) have a structure which can be considered as
typical or canonical for linear combinatorial problems:

1. The setting si(e) := ∞ for all e ∈ {e1, . . . , ei−1} prevents from selecting again
an element that was already chosen in a previous step of the construction
heuristic.

2. The setting si(e) := ∞ for those e ∈ E where {e1, . . . , ei−1, e} is cyclic
prevents from selecting an element that would trivially lead to an infeasible
solution.

3. The setting si(e) := c(e) for all other e ∈ E is an adaptation of the objective
function to the scoring function.

Using such scoring function, the solution is iteratively built up by those elements
that have the most promising objective function value and don’t lead trivially to
an infeasible solution. It is probably the easiest and perhaps most natural way
to obtain a scoring function from the problem’s objective function. However,
especially when solving an NP -hard problem, greedy algorithms with scoring
functions that are constructed along this methodology can easily be trapped
by constructing an instance where they perform very badly. For instance, we
consider the AP3. As abbreviation we denote e = (u, v, w) ∈ E := I × J × K
and ek = (uk, vk, wk) for k ∈ N. A canonical scoring function family, similar to
Kruskal’s, is the following: s1(e) := c(e) for all e ∈ E, and

si(e) :=

⎧⎨
⎩
∞ ; e ∈ {e1, . . . , ei−1},
∞ ; u = uk or v = vk or w = wk for some k ∈ {1, . . . , i− 1},
c(e) ; otherwise,

(2)

for i > 1. Now we apply this greedy algorithm to an instance having the following
input data: I := J := K := {1, 2},

(
c111 c112

c121 c122

)
=
(

1 10
10 10

)
,

(
c211 c212

c221 c222

)
=
(

10 10
10 100

)
. (3)

In the first step of the heuristic, element e1 := (1, 1, 1) is selected, because e1 is
the (unique) minimum of the scoring function s1. In the second (and last) step,
only element e2 := (2, 2, 2) has a finite score and is therefore selected. The entire
solution is S := {(1, 1, 1), (2, 2, 2)}, and its objective function value is f(S) =
c(e1) + c(e2) = 1 + 100 = 101. Thus the greedy heuristic returned the (unique)
maximum. A minimum is, for instance, the solution Sopt := {(1, 1, 2), (2, 2, 1)}.
Here the objective function value is f(Sopt) = 10 + 10 = 20.
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2.2 Parametrized Greedy

A parametrized scoring function with p parameters λ ∈ Qp is a mapping si :
E × Qp → Q ∪ {∞}. A greedy heuristic that makes use of scoring functions
si(·, λ) for a given λ ∈ Qp is hence called a parametrized greedy heuristic or
pgreedy, for short. PGreedy was initially developed to solve the vehicle routing
problem with coupled time windows (see Fügenschuh [6] for the details).

The local criterion which element to select, and hence the entire solution
found by the pgreedy heuristic, depends on the actual choice of λ ∈ Qp. We write
S(λ) for the solution found when the pgreedy algorithm is called with parameter
λ, and z(λ) for the corresponding objective function value, i.e., z(λ) = f(S(λ)).
We are now faced with the problem to find a vector λ with z(λ) ≤ z(μ) for all
μ ∈ Qp and hence to search for

zpgreedy := inf{z(λ) : λ ∈ Qp}.

First we remark that the infimum is in fact a minimum, and that the search can
be restricted to a compact subset of the unbounded Qp. Let ‖ · ‖ be an arbitrary
norm on the space Qp. The most prominent examples are, for instance, the
1-norm ‖x‖1 :=

∑p
i=1 |xi|, the euclidean norm ‖x‖2 :=

∑p
i=1 x2

i , or the max-
norm ‖x‖∞ := max{|xi| : 1 ≤ i ≤ p}.
Theorem 1. There exists a sufficiently large number R > 0 such that

zpgreedy = min{z(λ) : λ ∈ Qp, ‖λ‖ ≤ R}.

In the sequel we restrict our discussion to the case of scoring functions that are
linear in the parameters, i.e., for all e ∈ E, λ, μ ∈ Qp, and t, u ∈ Q we have
s(e, t · λ + u · μ) = t · s(e, λ) + u · s(e, μ). In the case of linear scoring functions,
the search space for the parameters can be further restricted.

Theorem 2. Let λ, λ′ ∈ Qp. If there is a positive scalar t ∈ Q+ such that
λ′ = t · λ then S(λ) = S(λ′) and hence z(λ) = z(λ′).

Corollary 1. For every solution S(λ) with λ ∈ Qp\{0} there is a λ′ ∈ Qp with
‖λ′‖ = 1 such that S(λ) = S(λ′).

In particular, we obtain the following result.

Corollary 2.
zpgreedy = min{z(λ) : ‖λ‖ = 1}.

Informally speaking, in the case of linear scoring functions, one can reduce the
parameter search space by one dimension.

For example, consider a search space with p parameters and the euclidean
norm ‖ · ‖2. The set of parameters λ with ‖λ‖ = 1 is the p-dimensional unit
hypersphere Sp−1. A parametrization of this sphere is given by polar coordinates:
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Φp(ϕ) := λϕ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

cosϕp−1 · cosϕp−2 · . . . · cosϕ2 · cosϕ1

cosϕp−1 · cosϕp−2 · . . . · cosϕ2 · sinϕ1

cosϕp−1 · cosϕp−2 · . . . · cosϕ3 · sinϕ2

...
cosϕp−1 · sinϕp−2

sin ϕp−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

for ϕ ∈ Bp−1 := [−π, π[×[−π
2 , π

2 [p−2 (see Kaballo [10] for the details). Hence the
search can be restricted to the bounded, rectangular set Bp−1.

But even in this lower-dimensional setting, the problem of finding these para-
meters remains. To this end, we now discuss several parameter selection strate-
gies. In the sequel, we denote the p−1 dimensional, bounded search space always
as Bp−1 ⊂ Qp−1, and the corresponding parameter for the scoring function as
λϕ, where ϕ ∈ Bp−1.

Enumeration. Since the parameter search space is bounded, the optimal para-
meter vector ϕ can in principle be found by sampling over a bounded subset
of the regular, sufficiently dense grid Λp−1

d := {k
d · ei : k ∈ Z, 1 ≤ i ≤ p− 1},

where ei is the i-th unit vector, i.e., ei := (0, . . . , 0, 1, 0, . . . , 0) with the 1
at position i, and d ∈ N is a parameter taking control of the grid’s density
(the greater d, the finer the grid). For each ϕ ∈ Bp−1 ∩ Λp−1

d the pgreedy
heuristic has to be called and the best ϕ (i.e., the ϕ with the lowest objective
function value z(λϕ)) is kept. However, in practice this approach turns out
to be inefficient, even for a relative few number of parameters.

Pure Random Search. The simplest idea besides enumeration is to select a
candidate ϕ parameters randomly (PRS, for short), which in practice also
leads to a high number of runs.

Improving Hit-and-Run. This strategy was introduced by Zabinsky et al.
[21] (see also [20]) to solve general global optimization problem. Improving
hit-and-run (or IHR, for short) is a randomized (Monte-Carlo) algorithm
that automatically selects parameters which lead to good, possibly optimal
solutions when used in a pgreedy heuristic. In a hybrid algorithm of pgreedy
and IHR, a combination of a parametrized greedy algorithm and improving
hit-and-run, IHR is used to compute the weights λ that take control of the
parametrized scoring function and calls the pgreedy algorithm as a black-box
to obtain a new objective function value. The basic idea behind improving
hit-and-run is to use hit-and-run to generate candidate points randomly and
accept only those that are an improvement with respect to the objective
function. (See Smith [19] for more details on hit-and-run.) The IHR algo-
rithm works as follows: We start with an initial ϕ0 ∈ Bp−1, and set k := 0.
The following steps are now repeated until a stopping criterion is met, for
example, if the number of iterations k reaches a certain limit. Generate a
random direction vector dk uniformly distributed on the boundary of the
unit hypersphere Sp−1 := {ϕ ∈ Qp−1 : ‖ϕ‖2 = 1}. Generate a candidate
point wk+1 := ϕk + t · dk, where t is generated by sampling uniformly over
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the line set Lk := {ϕ ∈ Bp−1 : ϕ = ϕk + t · dk, t ∈ Q+}. If the candidate
point is improving, i.e., z(λwk+1) < z(λϕk), we set ϕk+1 := wk, otherwise
ϕk+1 := ϕk. Finally, increase k by 1.

Hide-and-Seek. On some practical applications of IHR it has been observed
that IHR sometimes gets trapped in local optima [20]. To avoid this, one can
use a generalization of IHR, called Hide-and-Seek (HAS, for short), proposed
by Romeijn and Smith [18]. HAS is a hybridization of IHR and Simulated
Annealing. As in IHR, in case of an improving candidate point wk+1, this
point is always accepted. If the candidate point is not improving, then it still
might be accepted with a certain probability. This probability is adjusted
after each iteration, so that the acceptance of non-improving points will
become less likely in later iterations. In detail, we set

ϕk+1 :=
{

wk+1 ; with probability PTk
(ϕk, wk+1),

ϕk ; otherwise,

where PTk
(ϕk, wk+1) := min{1, exp((z(λϕk) − z(λwk+1))/T )}, and Tk is the

temperature in the k-th iteration. The temperature is updated according to
a cooling schedule. For example, one can select a starting temperature T0 ∈
[0,∞] and a cooling factor q ∈ [0, 1], and use the update rule Tk+1 := q · Tk.
Note that for T0 := 0 the whole HAS algorithm passes into the IHR algorithm.

We now extend the greedy heuristic using the scoring function (2) for the AP3
to a parametrized greedy heuristic. The crucial point for pgreedy is that more
than a single criterion is needed. Finding those additional criteria is in general
more of an art than science. For example, if in the i-th step of the greedy heuristic
an element e = (u, v, w) ∈ E is selected, one can consider

∑
e′∈N(e) c(e′) with

N(u, v, w) := {(α, β, γ) ∈ E : u = α or v = β or w = γ}, i.e., the total weight of
all neighboring elements which are not selectable anymore if e is selected, as an
additional term in the scoring function. Moreover, one can consider the smallest
coefficient min{c(e′) : e′ ∈ N(e)} or the largest coefficient max{c(e′) : e′ ∈ N(e)}
in the neighborhood of e as additional terms. We set

σ(e, λ) := λ1 · c(e) + λ2 ·
∑

e′∈N(e)

c(e′) +

λ3 ·min{c(e′) : e′ ∈ N(e)}+ λ4 ·max{c(e′) : e′ ∈ N(e)}
and define

si(e, λ) :=

⎧⎪⎪⎨
⎪⎪⎩
∞ ; e ∈ {e1, . . . , ei−1},
∞ ; u = uk or v = vk or w = wk

for some k ∈ {1, . . . , i− 1},
σ(e, λ) ; otherwise

(4)

as i-th parametrized scoring function, where λ = (λ1, . . . , λ4) ∈ Q4 are some
scalar parameters. Note that for λ = (1, 0, 0, 0) the classical scoring function (2)
is regained. Hence the best solution found by an algorithm using (4) is expected
to be at least as good as when using (2) as scoring function.
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We apply pgreedy to the instance (3) from above. Consider the parameter
vector λ = (1,−1, 0, 0). Then we obtain s1((1, 1, 2), λ) = −131 as scoring func-
tion value for (1, 1, 2), which is minimal and hence e1 := (1, 1, 2) is selected.
(Note that this selection is not unique, since other elements have the same mini-
mal score.) Now for the selection of the second element, only e2 := (2, 2, 1) (also
with score s2((2, 2, 1), λ) = −131) remains. Hence {e1, e2} = Sopt.

From this small example we learn that parametrized greedy heuristics are able
to construct better (even optimal) solutions than their classical counterparts.
For larger instances, the solution quality can further be improved by embedding
pgreedy into a GRASP search scheme.

2.3 GRASP

GRASP is an abbreviation of Greedy Randomized Adaptive Search Procedure.
This metaheuristic for solving combinatorial optimization problems was first
introduced by Feo and Resende for the set covering problem [5]. Since its first
description in 1989, GRASP has been successfully applied to many difficult com-
binatorial optimization problems, see [17] for a recent survey. In its basic form it
is a multi-start, iterative process where each iteration consists of two phases: A
construction phase, in which a feasible solution is produced, and a local search
phase, where the neighborhood of this solution is investigated to find a better
solution.

In the construction phase a feasible solution S ∈ F is built step-by-step using
a greedy scoring function, similar as it is done in the pure greedy heuristics
described above. The difference is that not the element with the best (lowest)
scoring value is chosen automatically. Instead a restricted candidate list (RCL),
i.e., set of candidates with a sufficiently good greedy function value, is built and
some element from this list is chosen randomly.

There are basically two approaches to build a RCL. First, there is the
cardinality-based approach, where a fixed number maxRCL is given, and the
best maxRCL candidates (with respect to the scoring function) are put into
the RCL. The other approach is the value-based one, where a threshold value
gthresh is lying between gmin, the best and gmax, the worst (but finite) scoring
function value of the candidates. For example, the threshold is given by the for-
mula gthresh := gmin + α · (gmax − gmin), where α ∈ [0, 1] is a parameter taking
control of the size of the list. Now all candidates having a scoring function value
lower than gthresh are placed in the RCL. In both cases, the cardinality-based
and the value-based, an element e from the RCL is randomly chosen and put
into the solution S under construction.

The parameter α is usually chosen randomly in the interval [0, 1], and its
value remains constant during the whole construction phase. This parameter
plays a decisive role for the quality of the constructed solution. It is a measure
for the greediness of the choice of the elements. For example, α = 0 means that
only elements with the best greedy function value of all candidates can be chosen.
In this case the construction phase is equivalent to the pure greedy algorithm
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with a random choice in the case of ties. On the other hand, α = 1 means pure
random choice among all candidates.

As a local search post-optimization routine one can use path relinking (PR).
PR was proposed by Glover [8] as an approach to enhance intensification and
diversification in the tabu search heuristic, but it can as well be integrated into
other heuristics. The first hybrid metaheuristic of GRASP and path relinking was
implemented by Laguna and Marti [12]. Aiex et al. [1] give a detailed description
of an adaptation of PR for the AP3.

2.4 Parametrized Greedy and GRASP

The two strategies of parametrizing a greedy scoring function on the one hand
and randomizing the choice among the best candidates on the other hand can
be naturally combined into a single approach for solving difficult combinatorial
optimization problems. We propose the term parametrized GRASP, or PGRASP
for short, for this hybrid metaheuristic.

One iteration of PGRASP consists of three phases: 1) the choice of λ para-
meters by means of an enumerative or stochastic procedure (such as PRS, IHR,
or HAS), 2) a construction phase, which is equivalent to the construction phase
of a GRASP with the additional property that a parametrized greedy function
is used, and 3) a local search phase.

In contrast to the pgreedy heuristic (with a deterministic rule to break ties),
the outcome of the PGRASP construction phase with a fixed parameter λ is sto-
chastic. In GRASP the objective function value of the solution depends crucially
on the parameter α (see [17]), whereas in pgreedy it depends on λ. Hence it is
not reasonable to change λ after just one constructed solution. Instead, there is
a given number of iterations l, where the same λ but different values for α are
used. After l iterations, a new λ is selected based on one of the rules presented
above.

3 Computational Results

All computational experiments were carried out on a dual Intel-Pentium III
computer running at 500MHz with 256MB RAM, 512kB cache memory and 1GB
swap. The operating system was Debian Linux 2.4.26. The code was written in
C and compiled using gnuC2.95.4. Random numbers are generated using the
rand function of the C standard library. In the beginning of a program run, the
function srand is once applied with a seed chosen by the user.

3.1 Test Instances

We considered four different classes of test instances. Two classes are gener-
ated following the outlines found in the literature. Altogether we used a pool
consisting of 18 test instances.
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1. Balas and Saltzman [2] describe instances with sizes ranging from n = 12 to
n = 26. The cost coefficients cijk are integer and uniformly generated in the
interval [0, 99]. We generated four instances of this class, bs26, bs40, bs54,
and bs66, with n = 26, 40, 54, 66, respectively.

2. Crama and Spieksma [4] reformulate the AP3 as an optimization problem
in the tripartite graph Kn,n,n := (I ∪ J ∪K, (I × J) ∪ (I ×K) ∪ (J ×K)).
A triple (i, j, k) of the original formulation of the AP3 corresponds then to
the triangle (i, j, k) in Kn,n,n. The costs cijk are associated with triangles,
and the problem consists in finding a minimum cost collection of n disjoint
triangles. A length duv > 0 is assigned to each edge of Kn,n,n, and the cost
cijk of triangle (i, j, k) ∈ I×J×K is its circumference cijk := dij +dik +djk.
Crama and Spieksma suggest three types of randomly assigning a length to
an edge (see [4] for the details). For each type we took two instances with
n = 33 and n = 66 from [16], which gives six instances altogether. These
instances are referred to as cs33t1, cs33t2, cs33t3, cs66t1, cs66t2, and
cs66t3.

3. The instances of Burkard, Rudolf, and Woeginger [3] have decomposable
integer cost coefficients cijk = αi · βj · γk where αi, βj , γk are uniformly
distributed in the interval [1, 10]. We generated four instances according this
guideline called brw26, brw40, brw 54, and brw66 with n = 26, 40, 54, 66,
respectively.

4. The instances fh26, fh40, fh54, and fh66 (for n = 26, 40, 54, 66, respec-
tively) have cost coefficients cijk := �10000 ·z2�, where z ∈ [0, 1] is randomly
generated.

3.2 GRASP, PGRASP, and the Global Optimum

We implemented GRASP with path relinking according to the paper of Aiex
et al. [1]. Our implementation computes approximately twice as much feasible
solutions per hour compared to the one of Aiex et al. For each of the 18 instances
we first computed the global optimum using ILOG CPLEX 9.0.1 as a MIP solver
[9]. On some of the larger instances this took several hours up to a few days.
For the two heuristics we set |P| = 20 as limit for the path relinking solution
pool P . In the PGRASP algorithm λ was chosen by IHR (i.e., T0 = 0). We
set l = 20, that is, after 20 GRASP iterations a new λ is selected using IHR.
Both heuristics, GRASP and PGRASP, were limited to a three minute search
per instance. Each heuristic was then called 20 times for each instance, and we
measured the average objective function value of all 20 solutions (which took
one hour per entry in the table below).

In 13 out of 18 runs, PGRASP was (slightly) ahead of GRASP, that means,
the average solution quality from 20 runs was better. GRASP was (also slightly)
better than PGRASP in two case (for brw54 and fh40), and both were equal in
three cases (for cs33t1, brw26 and brw66). Both heuristics were only twice (for
cs33t1 and brw26) able to identify a globally optimal solution in all 20 runs.
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3.3 Conclusions

The results presented in Table 1 indicate that PGRASP is able to compensate
the fewer number of iterations compared to the pure GRASP heuristic in almost
4 out of 5 runs. This shows that for finding good solutions for the AP3 it might
be advantageous to take multiple greedy functions into account. From additional
computations (not presented in detail here) we can furthermore conclude that the
more sophisticated variants of parameter selection (like IHR and HAS) clearly
outperform the simple PRS.

Table 1. Comparison of CPLEX, GRASP and PGRASP

Instance CPLEX GRASP PGRASP
bs26 0.00 9.05 8.45
bs40 0.00 13.25 11.35
bs54 0.00 16.35 15.55
bs66 0.00 19.50 17.15
cs33t1 1401.00 1401.00 1401.00
cs33t2 5067.00 5068.20 5068.15
cs33t3 131.00 131.30 131.20
cs66t1 2449.00 2458.80 2458.35
cs66t2 8944.00 8957.85 8957.50
cs66t3 286.00 286.45 286.40
brw26 2544.00 2544.00 2544.00
brw40 4903.00 4903.50 4903.45
brw54 5181.00 5181.85 5182.05
brw66 5323.00 5327.30 5327.30
fh26 1.00 87.05 70.05
fh40 0.00 123.05 123.45
fh54 0.00 191.30 174.95
fh66 0.00 289.25 280.20
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Abstract. Bucket elimination (BE) is an exact technique based on vari-
able elimination, commonly used for solving constraint satisfaction prob-
lems. We consider the hybridization of BE with evolutionary algorithms
endowed with tabu search. The resulting memetic algorithm (MA) uses
BE as a mechanism for recombining solutions, providing the best possible
child from the parental set. This MA is applied to the maximum den-
sity still life problem. Experimental tests indicate that the MA provides
optimal or near-optimal results at an acceptable computational cost.

1 Introduction

The game of life [1] consists of an infinite checkerboard in which the only player
places checkers on some of its squares. Each square is a cell that has eight
neighbors: the eight cells that share one or two corners with it. A cell is alive
if there is a checker on it, and dead otherwise. The state of the board evolves
iteratively according to three rules: (i) if a cell has exactly two living neighbors
then its state remains the same in the next iteration, (ii) if a cell has exactly
three living neighbors then it is alive in the next iteration and (iii) if a cell has
fewer than two or more than three living neighbors, then it is dead in the next
iteration. An interesting extension of this game is the maximum density still life
problem (MDSLP) that consists of finding board configurations with a maximal
number of living cells not changing along time. These stable configurations are
called maximum density stable patterns or simply still lifes. In this paper we are
concerned with the MDSLP and finite patterns, i.e., finding n× n still lifes. No
polynomial method is known for this problem.

Our interest in this problem is manifold. Firstly, it must be noted that the
patterns resulting in the game of life are very interesting. For example, by clever
placement of the checkers and adequate interpretation of the patterns, it is pos-
sible to create a Turing-equivalent computing machine [2]. From a more applied
point of view, it is interesting to consider that many aspects of discrete dynami-
cal systems have been developed or illustrated by examples in life game [3, 4]. In
this sense, finding stable patterns can be regarded as a mathematical abstraction
of a standard issue in discrete systems control. Finally, the MDSLP is a prime
example of weighted constrained optimization problem, and as such constitutes
an excellent test bed for different optimization techniques.

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 73–85, 2006.
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The still life problem has been recently included in the CSPLib repository
and a dedicated web page1 maintains up-to-date results. This problem has been
tackled using different approaches. Bosch and Trick [5] used a hybrid approach
mixing integer programming and constraint programming to solve the cases for
n = 14 and n = 15 in about 6 and 8 days of CPU time respectively. Smith [6]
considered a pure constraint programming approach to tackle the problem and
proposed a formulation of the problem as a constraint satisfaction problem with
0-1 variables and non-binary constraints. A dual formulation of the problem was
also considered, and it was proved that this dual representation outperformed
the initial one (although it could only solve instances up to n = 10). In any case,
this dual encoding was particularly useful to find (90◦ rotational) symmetric
solutions (e.g., it found the optimal solution for n = 18). Later on, Larrosa et
al. [7, 8] showed the usefulness of variable elimination techniques, namely bucket
elimination (BE), on this problem. Their basic approach could solve the problem
for n = 14 in about 105 seconds. Further improvements pushed the solvability
boundary forward to n = 20 in about the same time. At any rate, it is clear that
these exact approaches are inherently limited for increasing problem sizes, and
their capabilities as anytime algorithms are unclear. Furthermore, to the best of
our knowledge no heuristic approaches to this problem have been attempted.

In this work, we consider the hybridization of evolutionary algorithms with
the BE approach. We will show that memetic algorithms (MAs) endowed with
BE can provide optimal or near-optimal solutions at an acceptable computa-
tional cost. To do so, we will firstly introduce the essentials of BE in next section.

2 WCSPs and Bucket Elimination

A Weighted constraint satisfaction problem (WCSP) [9] is a constraint satisfac-
tion problem (CSP) in which the user can express preferences among solutions.
A WCSP is defined by a tuple (X, D, F ), where X = {x1, · · · , xn} is a set of
variables taking values from their finite domains (Di ∈ D is the domain of xi)
and F is a set of cost functions (also called soft constraints). Each f ∈ F is de-
fined over a subset of variables var(f) ⊆ X , called its scope. For each assignment
t of all variables in the scope of a soft constraint f , t ∈ f (i.e., t is permitted)
if, and only if, t is allowed by the soft constraint. A complete assignment that
satisfies every soft constraint represents a solution to the WCSP. The valuation
of an assignment t is defined as the sum of costs of all functions whose scope is
assigned by t. Permitted assignments receive finite costs that express their de-
gree of preference and forbidden assignments receive cost ∞. The optimization
goal consists of finding the solution with the lowest valuation.

2.1 The Bucket Elimination Approach

Bucket elimination [10] is a generic algorithm suitable for many automated rea-
soning and optimization problems, in particular for WCSP solving.
1 http://www.ai.sri.com/∼nysmith/life/
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function BE(X, D, F )
1: for i := n downto 1 do
2: Bi := {f ∈ F | xi ∈ var(f)}
3: gi := ( f∈Bi

f) ⇓ i

4: F := (F {gi}) − Bi

5: end for
6: t := ∅
7: for i := 1 to n do
8: v := argmina∈Di{( f∈Bi

f)(t · (xi, a))}
9: t := t · (xi, v)

10: end for
11: return(F, t)

end function

Fig. 1. The general template of Bucket Elimination for a WCSP (X, D, F )

BE is based upon the following two operators over functions:

– The sum of two functions f and g denoted (f + g) is a new function with
scope var(f)∪var(g) which returns for each tuple the sum of costs of f and
g defined as (f + g)(t) = f(t) + g(t);

– The elimination of variable xi from f , denoted f ⇓ i, is a new function
with scope var(f) − {xi} which returns for each tuple t the minimum cost
extension of t to xi, defined as (f · i)(t) = mina∈Di{f(t · (xi, a))} where
t · (xi, a) means the extension of t to the assignment of a to xi. Observe that
when f is a unary function (i.e., arity one), eliminating the only variable in
its scope produces a constant.

Fig. 1 shows an operational schema of the BE algorithm for solving a certain
WCSP. The displayed algorithm returns the optimal cost in F and one opti-
mal assignment in t. Note that BE has exponential space complexity because
in general, the result of summing functions or eliminating variables cannot be
expressed intensionally by algebraic expressions and, as a consequence, interme-
diate results have to be collected extensionally in tables.

As it can be seen in Fig. 1, BE works in two phases. In the first phase (lines
1-5), the algorithm eliminates variables one at a time in reverse order according
to an arbitrary variable ordering o (without loss of generality, here we assume
lexicographical ordering for the variables in X , i.e, o = (x1, x2, · · · , xn)). In
the second phase (lines 6-10), the optimal assignment is computed processing
variables in increasing order. The elimination of variable xi is done as follows:
initially (line 2), all cost functions in F having xi in their scope are stored in Bi

(the so called bucket of xi). Next (line 3), BE creates a new function gi defined
as the sum of all functions in Bi in which variable xi has been eliminated.
Then (line 4), this function is added to F that is also updated by removing the
functions in Bi. The consequence is that the new F does not contain xi (all
functions mentioning xi were removed) but preserves the value of the optimal
cost. The elimination of the last variable produces an empty scope function (i.e.,
a constant) which is the optimal cost of the problem. The second phase (lines
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6-10) generates an optimal assignment of variables. It uses the set of buckets that
were computed in the first phase: starting from an empty assignment t (line 6),
variables are assigned from first to last according to o. The optimal value for xi is
the best value regarding the extension of t with respect to the sum of functions
in Bi (lines 8,9). We use argmina{f(a)} to denote the value of a producing
minimum f(a).

The complexity of BE depends on the problem structure (as captured by its
constraint graph G) and the ordering o. According to [8], the complexity of BE
along ordering o is time Θ(Q × n × dw∗(o)+1) and space Θ(n × dw∗(o)), where
d is the largest domain size, Q is the cost of evaluating cost functions (usually
assumed Θ(1)), and w∗(o) is the maximum width of nodes in the induced graph
of G relative to o (check [8] for details).

2.2 Bucket Elimination for the Still Life Problem

The general template presented above can be readily applied to the MDSLP.
To this end, let us first introduce some notation. A board configuration for a
n×n instance will be represented by a n-dimensional vector (r1, r2, . . . , rn). Each
vector component encodes (as a binary string) a row, so that the j-th bit of row
ri (noted rij) indicates the state of the j-th cell of the i-th row (a value of 1
represents a live cell and a value of 0 a dead cell). Let Zeroes(r) be the number
of zeroes in binary string r and let Adjacents(r) be the maximum number of
adjacent living cells in row r. If ri is a row and ri−1 and ri+1 are the rows above
and below r, then Stable(ri−1, r, ri+1) is a predicate satisfied if, and only if, all
cells in r are stable.

The formulation has n cost functions fi (i ∈ {1..n}). For i ∈ {2..n− 1}, fi is
ternary with scope var(fi) = {ri−1, ri, ri+1} and is defined as2:

fi(a, b, c) =

⎧⎪⎪⎨
⎪⎪⎩

∞ : ¬Stable(a, b, c)
∞ : a1 = b1 = c1 = 1
∞ : an = bn = cn = 1

Zeroes(b) : otherwise

(1)

As to f1, it is binary with scope var(f1) = {r1, r2} and is specified as:

f1(b, c) =

⎧⎨
⎩

∞ : ¬Stable(0, b, c)
∞ : Adjacents(b) > 2

Zeroes(b) : otherwise
(2)

Likewise, the scope of fn is var(fn) = {rn−1, rn} and its definition is:

fn(a, b) =

⎧⎨
⎩

∞ : ¬Stable(a, b, 0)
∞ : Adjacents(b) > 2

Zeroes(b) : otherwise
(3)

2 Notice in these definitions that stability is not only required within the pattern, but
also in the surrounding cells (assumed dead).
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function BE(n, D)
1: for a, b ∈ D do
2: gn(a, b) := minc∈D{fn−1(a, b, c) + fn(b, c)}
3: end for
4: for i := n − 1 downto 3 do
5: for a, b ∈ D do
6: gi(a, b) := minc∈D{fi−1(a, b, c) + gi+1(b, c)}
7: end for
8: end for
9: (r1, r2) := argmina,b∈D{g3(a, b) + f1(a, b)}

10: opt := g3(r1, r2) + f1(r1, r2)
11: for i := 3 to n − 1 do
12: ri := argminc∈D{fi−1(ri−2, ri−1, c) + gi+1(ri−1, c)}
13: end for
14: rn := argminc∈D{fn−1(rn−2, rn−1, c) + fn(rn−1, c)}
15: return (opt, (r1, r2, . . . , rn))

end function

Fig. 2. Bucket Elimination for the MDSLP

Due to the sequential structure of the corresponding constraint graph, the
model can be easily solved with BE. Fig. 2 shows the corresponding algorithm.
Function BE takes two parameters: n is the size of the instance to be solved,
and D is the domain for each variable (row) in the solution. If domain D is set
to {0..2n − 1} (i.e., a set containing all possible rows) the function implements
an exact method that returns the optimal solution for the problem instance (as
the number of dead cells) and a vector corresponding to rows representing that
solution.

Note that the complexity of this method is time Θ(n2 × 23n) and space
Θ(n × 22n). On the other hand, a basic search-based solution to the problem
could be implemented with worst case time complexity Θ(2(n2)) and polyno-
mial space. Observe that the time complexity of BE is therefore an exponential
improvement over basic search algorithms, although its high space complexity
makes the approach unpractical for large instances.

3 A Memetic Algorithm for the MDSLP

WSCPs are very amenable for being tackled with evolutionary metaheuristics.
The quality of the results will obviously depend on how well the structure of the
soft constraints is captured by the search mechanisms used in the optimization
algorithm. To this end, problem-aware algorithmic components are essential. In
the particular case of the MDSLP, we will use tabu search (TS) and BE for this
purpose, integrating them into a memetic approach. Before detailing these two
components, let us describe the basic underlying evolutionary algorithm (EA).
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3.1 Representation and Fitness Calculation

The natural representation of MDSLP solutions is the binary encoding. Config-
urations will be represented as a binary n × n matrix r. Clearly, not all such
binary matrices will correspond to stable patterns, i.e., infeasible solutions can
be represented. We have opted for using a penalty-based fitness function in order
to deal with such infeasible solutions. To be precise, the fitness (to be minimized)
of a configuration r is computed as:

f(r) = n2 −
n∑

i=1

n∑
j=1

rij + K

n+1∑
i=0

n+1∑
j=0

[
r′ijφ1(ηij) + (1− r′ij)φ0(ηij)

]
(4)

where r′ is an (n+2)×(n+2) binary matrix obtained by embedding r in a frame
of dead cells (i.e., r′ij = rij for i, j ∈ {1..n}, and r′ij = 0 otherwise – recall that
stability is not only required within the n× n board, but also in its immediate
neighborhood), K is a constant, ηij is the number of live neighbors of cell (i, j),
and φ0, φ1 : N −→ N are two functions defined as:

φ0(η) =
{

0 if η �= 3
K ′ + 1 otherwise φ1(η) =

⎧⎨
⎩

0 if 2 � η � 3
K ′ + 2− η if η < 2
K ′ + η − 3 if η > 3

(5)

where K ′ is another constant. The first double sum in Eq. (4) corresponds to the
basic quality measure for feasible solutions, i.e., the number of active cells. As
to the last term, it represents the penalty for infeasible solutions. The strength
of penalization is controlled by constants K and K ′. We have chosen K = n2

and K ′ = 5n2. With this setting, given any two solutions r and s, the one that
violates less constraints is preferred; if two solutions violate the same number of
constraints, the one whose overall degree of violation (i.e., distance to feasibility)
is lower is preferred. Finally, if the two solutions are feasible, the penalty term
is null and the solution with the higher number of live cells is better.

3.2 A Local Improvement Strategy Based on Tabu Search

The fitness function defined above provides a stratified notion of gradient that
can be exploited by a local search strategy. Moreover, notice that the function is
quite decomposable, since interactions among variables are limited to adjacent
cells in the board. Thus, whenever a configuration is modified, the new fitness can
be computed just considering the cells located in adjacent positions to changed
cells. To be precise, assume that cell (i, j) is modified in solution r, resulting in
solution s; the new fitness f(s) can be computed as:

f(s) = f(r) + K

⎡
⎣Δf1(rij , ηij) +

∑
i′,j′

Δf2(ri′j′ , ηi′j′ , rij)

⎤
⎦ (6)
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where the sum in the last term ranges across all cells (i′, j′) adjacent to (i, j),
and functions Δf1 and Δf2 are defined as:

Δf1(c, η) =

⎧⎨
⎩

0 η = 2
(−1)(1−c)φ0(η) η = 3
(−1)cφ1(η) otherwise

(7)

Δf2(c′, η, c) = (1− c′)Δf2,0(η, c) + c′Δf2,1(η, c) (8)

Δf2,0(η, c) =

⎧⎨
⎩

K ′ + 1 (η = 2 ∧ c = 0) ∨ (η = 4 ∧ c = 1)
−(K ′ + 1) η = 3
0 otherwise

(9)

Δf2,1(η, c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

K ′ + 1 (η = 2 ∧ c = 1) ∨ (η = 3 ∧ c = 0)
−(K ′ + 1) (η = 1 ∧ c = 0) ∨ (η = 4 ∧ c = 1)
1 (η = 1 ∧ c = 1) ∨ (η � 4 ∧ c = 0)
−1 (η = 0) ∨ (η � 5 ∧ c = 1)
0 otherwise

(10)

Using this efficient fitness re-computation mechanism, our local search strat-
egy explores the neighborhood N (r) = {s | Hamming(r, s) = 1}, i.e., the set of
solutions obtained by flipping exactly one cell in the configuration. This neigh-
borhood comprises n2 configurations, and it is fully explored in order to select
the best neighbor. In order to escape from local optima, a tabu-search scheme
is used: up-hill moves are allowed, and after flipping a cell, it is put in the tabu
list for a number of iterations (randomly drawn from [n/2, 3n/2] to hinder cy-
cling in the search). Thus, it cannot be modified in the subsequent iterations
unless the aspiration criterion is fulfilled. In this case, the aspiration criterion is
improving the best solution found in that run of the local search strategy. The
whole process is repeated until a maximum number of iterations is reached, and
the best solution found is returned.

3.3 Optimal Recombination with BE

In the context of the fitness function that we have considered, the binary repre-
sentation used turns out to be freely manipulable: any configuration can be evalu-
ated, and therefore any standard recombination operator for binary strings could
be utilized in principle. For example, we could consider the two-dimensional ver-
sion of single-point crossover, depicted in Fig. 3. While feasible from a compu-
tational point of view, such a blind operator would perform poorly though: it
would be more similar to macromutation than to a sensible recombination of
information. To fulfill this latter goal, we can resort to BE.

In section 2.2 it was shown how BE could be used to implement an exact
method to solve the MDSLP. Although the resulting algorithm was better than
basic search-based approaches, the corresponding time and space complexity
were very high. In the following we describe how BE can be used to imple-
ment a recombination operator that explores the dynastic potential [11] (possible
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Random
Column

↓

Random
Row

→
A1 A2

A3 A4

×
B1 B2

B3 B4

=

A1 B2

B3 A4

Fig. 3. Blind recombination operator for the MDSLP

children) of the solutions being recombined, providing the best solution that
can be constructed without introducing implicit mutation (i.e., exogenous
information).

Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be two board configurations
for a n× n instance of the MDSLP. Then, BE(n, {x1, x2, · · · , xn, y1, y2, · · · , yn})
calculates the best feasible configuration that can be obtained by combining rows
in x and y without introducing information not present in any of the parents.
Observe that we are just restricting the domain of variables to take values corre-
sponding to the configurations being recombined, so that the result of function
BE is the best possible recombination.

In order to analyze time complexity for this recombination operator, the crit-
ical part of the algorithm is the execution of lines 4-8 in Figure 2. In this case,
line 6 has complexity O(n2) (finding the minimum of at most 2n alternatives,
the computation of each being Θ(n)). Line 6 has to be executed n×2n×2n times
at most, making a global complexity of O(n5) = O(|x|2.5), where |x| ∈ Θ(n2)
is the size of solutions. Notice also that the recombination procedure can be
readily made to further exploit the symmetry of the problem, extending variable
domains to column values in addition to row values. The complexity bounds
remain the same in this case.

It must be noted that the described operator can be generalized to recombine
any number of board configurations like BE(n,

⋃
x∈S{xi | i ∈ {1..n}}) where S

is a set comprising the solutions to be recombined. In this situation, the time
complexity is O(k3n5) (line 6 is O(kn2), and it is executed O(k2n3) times), where
k = |S| is the number of configurations being recombined. Therefore, finding the
optimal recombination from a set of MDSLP configurations is fixed-parameter
tractable [12] when the number of parents is taken as a parameter.

4 Experimental Results

In order to assess the usefulness of the described hybrid recombination operator,
a set of experiments for different problem sizes (n = 12 up to n = 20) has been
realized. The experiments were done in all cases using a steady-state evolutionary
algorithm (popsize = 100, pm = 1/n2, pX = 0.9, binary tournament selection).
With the aim of maintaining some diversity, duplicated individuals were not
allowed in the population. All algorithms were run until an optimal solution was
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Fig. 4. Comparison of a plain EA, and a MA incorporating tabu search for different
problem sizes. Results are averaged for 20 runs.

found or a time limit was exceeded. This time limit was set to 3 minutes for
problem instances of size 12 and were gradually incremented by 60 seconds for
each size increment. For each algorithm and each instance size, 20 independent
executions were run. The experiments have been performed in a Pentium IV PC
(2400MHz and 512MB of main memory) under SuSE Linux.

First of all, experiments were done with a plain EA. This EA did not use lo-
cal search, utilized the blind recombination operator described in Sect. 3.3, and
performed mutation by flipping single cells. This algorithm was compared with
a MA that utilized tabu search for local improvement (maxiter = n2), and the
same recombination operator. Since simple bit-flipping moves were commonly
reverted by the local search strategy, a stronger perturbation was considered
during mutation, namely performing a cyclic rotation (by shifting bits one posi-
tion to the right) in a random row (or column). Fig. 4 shows the results of this
comparison. As it can be seen, the EA performs poorly, and is easily beaten by
the MA. While the former cannot even find a single feasible solution in most
runs, the MA finds not just feasible solutions in a consistent way, but solutions
between 0.73% and 5.29% from the optimum (the optimal solution is found in
at least one run for n < 15).

Subsequent experiments compared this basic MA with MAs endowed with
BE for performing recombination as described in Sect. 3.3 (denoted as MABE).
Since the use of BE for recombination has a higher computational cost than
a simple blind recombination, and there is no guarantee that recombining two
infeasible solutions will result in a feasible solution, we have defined two variants
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Fig. 5. Relative distances to optimum for each algorithm for sizes ranging from 12 up
to 20. Each box summarizes 20 runs.

of MABE: in the first one –MABE1F– we require that at least one of the parents
is feasible in order to apply BE; otherwise blind recombination is used. In the
second one –MABE2F– we require the two parents being feasible, thus being
more restrictive in the application of BE. With these two variants, we intend
to explore the computational tradeoffs involved in the application of BE as an
embedded component of the MA. For these algorithms, mutation was performed
prior to recombination in order to better exploit good solutions provided by BE.

Fig. 5 shows the empirical performance of the different algorithms evaluated
(relative to the optimum). Results show that MABE improves over MA on av-
erage and can find better solutions specially for larger instances. For example,
average relative distance to the optimal solution is just 2.39% for n = 20. Note
that results for n = 19 and n = 20 were obtained giving to each run of the
evolutionary algorithm just 10 and 11 minutes respectively. As a comparison,
recall that the approach in [7] respectively requires over 15 hours and over 2
days for these same instances, and that other approaches are unaffordable for
n > 15. Note also that MABE can find the optimal solution in at least one run
for n < 17 and n = 19 and the distance to the optimum for other instances is
less than 1.58%. Results for MABE1F and MABE2F show that these algorithms
do not improve over MABE. It seems that the effort saved not recombining un-
feasible solutions does not further improve the performance of the algorithm.
Fig. 6 extends these results up to size 28. The trend is essentially the same for
sizes 21 and 22. Quite interestingly, it seems that for much larger instances the
plain MA starts to catch up with MABE. This may be due to the increased
computational cost for performing recombination. Recall that we are linearly
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Fig. 6. Relative distances to the best known solutions for each algorithm for sizes
ranging from 21 up to 28. Each box summarizes 20 runs. Results are only displayed
for sizes for which an upper bound is available in the literature.

increasing the allowed computational time with the instance size, whereas the
computational complexity of BE is superlinear.

The statistical significance of the results has been evaluated using a non-
parametric test, the Wilcoxon ranksum test [13]. It has been found that differ-
ences are statistically significant (at the standard 5% level) when comparing the
plain EA to any other algorithm in all cases. When comparing MABE[∗] and MA,
differences are significant for all instances except for size 12 (where all algorithms
find systematically the optimum in most runs) and size > 24 (where the allowed
computational time might be not enough for MABE[∗] to progress further in the
search). Finally, improvements for MABE over MABE1F and MABE2F are only
significant in some cases (sizes 20, 22 and 24 for the former, and sizes 14, 15, 19,
20, 21 and 22 for the latter). The fact that MABE is significantly better than
MABE2F in more cases than it is for MABE1F correlates well with the fact that
BE is used less frequently in the former than in the latter.

5 Conclusions and Future Work

We have presented a model for the hybridization of BE, a well-known technique
in the domain of constraint programming, with EAs. The experimental results
for this model have been very positive, solving to optimality large instances of
a hard constrained problem, and outperforming other evolutionary approaches,
including a memetic algorithm incorporating tabu search.
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There are many interesting extensions to this work. As it was outlined in Sect.
3.3, the proposed optimal recombination operator can be used with more than
two parents. Furthermore, the resulting operator is fixed-parameter tractable
when the number of parents is taken as parameter. An experimental study of
multiparent recombination in this context can provide very interesting results.
Work is currently underway in this direction.

Further directions for future work can be found in a more-in-depth exploita-
tion of the problem symmetries [5, 6, 7, 8]: for any stable pattern an equivalent
one can be created by rotating (by 90◦, 180◦ or 270◦) or reflecting the board.
The presented approach could be adapted to incorporate them in the recombina-
tion process, probably boosting the search capabilities. We also plan to analyze
this possibility. Finally, in [7], a hybrid algorithm for the MDSLP that com-
bines BE and branch-and-bound search is presented providing excellent results.
Hybridizing this algorithm with an EA seems a promising line of research as
well.
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Abstract. In this paper we investigate the properties of CEAs with populations
structured as Watts–Strogatz small-world graphs and Albert–Barabási scale-free
graphs as problem solvers, using several standard discrete optimization problems
as a benchmark. The EA variants employed include self-adaptation of mutation
rates. Results are compared with the corresponding classical panmictic EA show-
ing that topology together with self-adaptation drastically influences the search.

1 Introduction

The standard population structure used in evolutionary algorithms (EAs) is the pan-
mictic structure. In panmictic populations, also called mixing, any individual is equally
likely to interact with any other individual. This setting is the most straightforward and
many theoretical results have been obtained for it. However, since at least two decades,
several researchers have suggested that EAs populations might have structures endowed
with spatial features, like many natural populations (for recent reviews see [1, 2] and
references therein). Empirical results suggest that using structured populations is often
beneficial owing to better diversity maintenance, formation of niches, and lower selec-
tion pressures in the population favoring the slow spreading of solutions and relieving
premature convergence and stagnation. The most popular models are the island model
and the cellular model. In the island model the whole population is subdivided into
several subpopulations each of which is panmictic. A standard EA runs in each sub-
population and, from time to time, a fraction of individuals migrate between islands.
Although this model may offer some advantages over a single mixing population, it is
still rather close to the latter.

Here we shall focus on cellular models instead, which are a more radical departure
from the standard setting. What sets them apart is the fact that all the operators act lo-
cally, within a small pool of individuals. The customary cellular topology is the regular
lattice. Cellular evolutionary algorithms (CEAs) on regular lattices, usually rings and
two-dimensional grids, have been often used with good results and some of their theo-
retical properties are known (see [2]). However, there is no reason why cellular models
should be limited to regular lattices. Other graph structures are possible, such as ran-
dom graphs and small-world networks. These small-world networks are not regular nor
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completely random, and have recently attracted a lot of attention in many areas because
of their surprising topological properties [3, 4]. Random graphs and small-world net-
works have been recently studied from the point of view of the selection intensity in
the population [5]. Random graphs are roughly equivalent to panmictic structures in
behavior, at least for not too small probability of having an edge between two arbitrary
vertices. The families of small-world graphs are potentially more interesting, as they
can induce widely variable global selection pressures, depending on the value of some
graph characteristic parameter [5]. A first investigation on the use of such structured
populations for optimization problems has been proposed by Preuss and Lasarczyk [6].

In this paper we investigate the properties of CEAs with populations structured as
Watts–Strogatz small-world graphs and Albert–Barabási scale-free graphs as problem
solvers, using several standard discrete optimization problems as a benchmark. We
should like to point out at the outset that it is not our intention to compete with the
best heuristics for the problems. We do not use problem information, nor do we include
any kind of local or enhanced search. Our goal is simply to compare these irregular
population structures with regular lattices CEAs and the panmictic EA using the sim-
plest settings and only few parameters. We are especially interested in answering the
following questions:

– What is the influence of different node degree distributions on CEAs when the over-
all connectivity (number of connections) remains constant?

– Are scale-free topologies worthwhile alternatives to standard small-world ones? If
so, for which problem types?

– When —if at all— does self-adaptation of mutation parameters provide an advan-
tage over fixed mutation rates?

When dealing with evolutionary algorithms on binary represented problems, a spo-
radically suggested [7] and rarely used technique is the self-adaptation of mutation
parameters. Although well established for continuous representations [8], its applica-
bility is rather unclear for test problems typically approached with genetic algorithms.
It is our hope that self-adaptation proves worthwhile for CEAs, especially in connection
with small-world topologies.

2 Test Problems

In this section we present the set of problems chosen for this study. The benchmark
is representative because it contains many different interesting features in optimiza-
tion, such as epistasis, multimodality, deceptiveness, and problem generators. These
are important ingredients in any work trying to evaluate algorithmic approaches with
the objective of getting reliable results, as stated by Whitley et al. in [9].

We experiment with the massively multimodal deceptive problem (MMDP), a mod-
ified version of the multimodal problem generator P-PEAKS, error correcting code
design (ECC), and the countsat problem (COUNTSAT). The choice of this set of prob-
lems is justified by both their difficulty and their application domains (combinatorial
optimization, telecommunications, etc.). This gives us a fair level of confidence in the
results, although no benchmark will ever be able to assert the superiority of a particular
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algorithm on all problems and problem instances [10]. The problems selected for this
benchmark are briefly presented in the following paragraphs.

Massively Multimodal Deceptive Problem (MMDP). The MMDP is a problem that
has been specifically designed to be difficult for an EA [11]. It is made up of k de-
ceptive subproblems (si) of 6 bits each, whose value depends on the number of ones
(unitation) a binary string has (see Figure 1). These subfunctions possess two global
maxima and a deceptive attractor in the middle point.
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Massively Multimodal Deceptive Problem
unitation subfunction value

0 1.000000
1 0.000000
2 0.360384
3 0.640576
4 0.360384
5 0.000000
6 1.000000

Fig. 1. Basic deceptive bipolar function (si) for MMDP

In MMDP each subproblem si contributes to the fitness value according to its uni-
tation (Figure 1). The global optimum has a value of k and it is attained when every
subproblem is composed of zero or six ones. The number of local optima is quite large
(22k), while there are only 2k global solutions. Therefore, the degree of multimodal-
ity is regulated by the k parameter. To avoid floor and ceiling effects (none or all EA
are able to solve the problem) we use a moderately difficult instance with k = 20.
Fitness is computed after after Eq. 1, utilizing subfunction si as depicted in Figure 1.
Note that this problem is separable; its constituents could be optimized individually if
its boundaries in the genome were known to the EA.

fMMDP (s) =
k∑

i=1

fitness(si) (1)

Multimodal Problem Generator (wP-PEAKS). A problem generator is an easily pa-
rameterizable task which has a tunable degree of epistasis, thus permitting to derive
instances with growing difficulty at will. With a problem generator we evaluate our
algorithms on a high number of random problem instances. Since a different instance is
solved each time the algorithm runs, the predictive power of the results for the problem
class as a whole is increased.

The idea of P-PEAKS is to generate P random N -bit strings that represent the lo-
cation of P peaks in search space. Using a small/large number of peaks results in
weakly/strongly epistatic problems. In the original problem formulation [12], the fit-
ness value of a string was the number of bits it had in common with the nearest peak in
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that space, divided by N . However, each peak represented a global optimum. We mod-
ified the problem by adding weights wi ∈ R+ with only w1 = 1.0 and w[2...P ] < 1.0,
thereby requiring the optimization algorithm to find the one peak bearing the global
optimum instead of just any peak. It should be noted that doing so for one global and
nine local peaks (as utilized in our experiments) —tested empirically— appears to be a
lot harder than a standard P-PEAKS with P = 100.

fwP−PEAKS(x) =
1
N

max
1≤i≤p

{wi · N − HammingD(x, Peaki)} (2)

Error Correcting Code Design Problem (ECC). The ECC problem was presented in
[13]. We will consider a three-tuple (n,M, d), where n is the length of each codeword
(number of bits), M is the number of codewords, and d is the minimum Hamming
distance between any pair of codewords. Our objective will be to find a code which
has a value for d as large as possible (reflecting greater tolerance to noise and errors),
given previously fixed values for n and M . The problem we have studied is a simplified
version of that in [13]. In our case we search half of the codewords (M/2) that will
compose the code, and the other half is made up by the complement of the codewords
computed by the algorithm. The fitness function to be maximized is:

fECC =
1

M∑
i=1

M∑
j=1,i�=j

d−2
ij

, (3)

where dij represents the Hamming distance between codewords i and j in the code C
(made up of M codewords of length n). In the present paper, we consider an instance
with M = 24 and n = 12, yielding optimum fitness of 0.0674 [14].

COUNTSAT Problem. The COUNSAT problem has been proposed by Droste et al.
[15] as an instance of the MAXSAT problem difficult to be solved by Evolutionary
Algorithms. In COUNTSAT, the solution value is the number of clauses (among all the
possible 3-variables Horn clauses) that are satisfied by an n-bit input string, where the
binary value 0 and 1 are considered as a false and a true boolean value, respectively.
It is easy to check that the optimum value is that of the solution with all the variables
assigned to 1. Droste et al. have proved that the fitness of a tentative solution x can be
easily computed using the following equation:

fCOUNTSAT(x) = s + n(n − 1)(n − 2) − 2(n − 2)

(
s

2

)
+ 6

(
s

3

)
, (4)

where s is the unitation of the solution x (i.e. the number of 1 entries in x), and n
is the length of x. In this paper we will study an instance of n = 20 variables, with
normalized optimum fitness of 1.0.

3 Small-World Graph Topologies

It has been shown in recent years that graphs occurring in many social, biological, and
man-made systems are often neither completely regular, such as lattices, nor completely
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random [16]. They have instead what has been called a small-world topology, in which
nodes are highly clustered yet the path length between them is small. This behavior
is due to the presence of shortcuts i.e., a few direct links between nodes that would
otherwise be far removed. Following Watts’ and Strogatz’s discovery, Barabasi et al.
[3] found that several important networks such as the World Wide Web, Internet, author
citation networks, and metabolic networks among others, also have the small world
property but their degree distribution function differs: they have more nodes of high
degree that are likely in a random graph of the same size and edge density. These graphs
have been called scale-free because the degree probability distribution function follows
a power law. In the next sections we briefly describe how small-world and scale-free
graphs can be constructed, more details can be found in [3, 4, 16].

3.1 The Watts–Strogatz Model

Although this model has been a real breakthrough in the technical sense when it ap-
peared, today it is clear that it is not a good representation of real networks as it retains
many features of the random graph model. In spite of this, the Watts–Strogatz model,
because of its simplicity of construction and the richness of behavior, is still an inter-
esting topology in artificial systems where there is no “natural” constraint on the type
of connectivity.

According to Watts and Strogatz [16], a small-world graph can be constructed start-
ing from a regular ring of nodes in which each node has k neighbors (k � N ) by
simply systematically going through successive nodes and “rewiring” a link with a cer-
tain probability β. When the edge is deleted, it is replaced with an edge to a randomly
chosen node. If rewiring an edge would lead to a duplicate edge, it is left unchanged.
This procedure will create a number of shortcuts that join distant parts of the lattice.

Shortcuts are the hallmark of small worlds. While the average path length1 between
nodes scales logarithmically in the number of nodes for a random graph, in Watts-
Strogatz graphs it scales approximately linearly for low rewiring probability but goes
down very quickly and tends to the random graph limit as β increases. This is due to
the progressive appearance of shortcut edges between distant parts of the graph, which
obviously contract the path lengths between many vertices. However, small worlds typ-
ically have a higher clustering coefficient2 than random graphs. Small-world networks
have a degree distribution P (k) close to Poissonian.

3.2 The Barabási-Albert Model

Albert and Barabási were the first to realize that real networks grow incrementally and
that their evolving topology is determined by the way in which new nodes are added
to the network and proposed an extremely simple model based on these ideas [3]. At
the beginning one starts with a small clique of m0 nodes. At each successive time step
a new node is added such that its m ≤ m0 edges link it to m nodes already in the

1 The average path length L of a graph is the average value of all pair shortest paths.
2 The clustering coefficient C of a node is a measure of the probability that two nodes that are

its neighbors are also neighbors among themselves. The average 〈C〉 is the average of the Cs
of all nodes in the graph.
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graph. When choosing the nodes to which the new nodes connects, it is assumed that
the probability π that a new node will be connected to node i depends on the degree
ki of i such that nodes that have already many links are more likely to be chosen over
those that have few. This is called preferential attachment and is an effect that can be
observed in several real networks. The probability π is given by:

π(ki) =
ki∑
j kj

,

where the sum is over all nodes already in the graph. The model evolves into a stationary
scale-free network with power-law probability distribution for the vertex degree P (k) ∼
k−γ , with γ ∼ 3.

4 Experiment

Focus. Investigate the effects of varied scale-free and small-world topologies on cellu-
lar EA with and without self-adaptation.

Pre-experimental Planning. First tests employed the parameter optimization method
SPO as recently suggested by Bartz-Beielstein [17]. They revealed that, keeping the
population size constant at 400 and the number of connections at 800, in most cases no
significant performance increase could be gained by varying the number of offspring per
generation or the maximum lifespan of an individual (the latter would lead to a κ-type
or comma-type environmental selection/replacement scheme). This also holds for the
mutation rate meta-parameter τ needed for self-adaptation, which has therefore been
fixed at 0.5. Furthermore, the mutation rate default setting pm = 1/l, with l the repre-
sentation length, could be verified as a good compromise when using a fixed mutation
rate for different problems.

A notable exception is the COUNTSAT problem, where self-adaptation together
with large birth surplus and comma-type environmental selection performed very well.
However, to simplify interpretation of results, we limited experimentation to plus se-
lection, that is, any parent survives as long as it is not outperformed by its offspring.
Our tests also showed that choosing a large population size for the panmictic EA is
well-founded for the given problem set, at least when striving for high success rates.

For all problems, we determined suitable run lengths in order to measure success
rates that approximate the ones for an infinite number of evaluations. The resulting run
lengths are given in Table 1. In most cases, the actual average amount of evaluations
needed to reach the global optimum is much lower.

When mutation rates are allowed to change, they still must be initialized with mean-
ingful values. Our testing revealed that either starting with pm = 1/l or pm = 0.5 for
all individuals is advantageous, as opposed to initializing pm uniformly within ]0, 1[ .

Task. The character of our experiment is explorative; we want to find evidence that
helps to answer the questions posed in the Introduction, namely situations in which
small-world/scale-free topology based CEAs and/or self-adaptation appear advanta-
geous over a standard, panmictic EA.
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Table 1. Problem designs, common (top) and individual (bottom) part. SR stands for success
rate, and AES is the average number of evaluations to solution. Each run was stopped at the given
maximum number of evaluations as the only termination criterion.

Initialization Number of runs Performance measures
randomized 100 SR/AES

Problem Instance Bits Max. eval Optimum
MMDP 20 blocks of 6 bits 120 120000 20.0
wP-PEAKS 10 peaks, w1 = 1.0, w[2...10] = 0.99 100 200000 1.0
ECC 12 codes à 12 bits, 12 complementary codes 144 400000 0.0674
COUNTSAT 20 bits 20 120000 1.0

Setup. Utilized problem designs, including initialization and termination criterion, are
documented in Table 1. The EA variants employed all use bit-flipping mutation with
probability pm and 2-point crossover. Mating selection is done randomly in the neigh-
borhood of each individual, i.e. uniform selection, or among the whole population
for the panmictic variant. We set the crossover probability to 1, so that during each
generation, every individual produces one offspring. Replacement —or environmental
selection— is performed simultaneously (synchronous) for all individuals, taking the
better one of the current individual and its offspring each. Population size (400) and
number of connections (800) are kept at CEA standard values to allow for comparison
with previous studies [18].

Self-adaptation is performed as suggested by Rudolph [19] for discrete variables, dif-
fering only in that a mutation event always flips the accordant bit instead of computing
its new value from the old one or choosing it randomly from {0, 1}. We apply it to the
mutation probability only, as depicted in Eqn. 5, where τ is a constant meta-parameter
and N(0, 1) stands for a standard normally distributed random variable.

p′mut = pmut · exp (τ ·N(0, 1)) (5)

Thus every individual gets a mutation probability that it bequeathes to approximately
half of its children by discrete recombination. We follow the standard scheme of evolu-
tion strategies by first applying mutation to the mutation rate, then utilizing the acquired
mutation rate for mutating the rest of the genome [8].

Summarizing, four EA variants are run on the test problem set: A panmictic EA, a
CEA with fixed mutation rate pm = 1/l, and two CEAs with self-adaptive mutation
rates, starting with pm = 1/l and pm = 0.5, respectively. Except for the panmictic
EA, different graphs are tested: For the Watts and Strogatz model topologies tried, we
vary the rewiring factor β between 0 and 0.2 . Whereas 0 stands for an unmodified
ring structure, β > 0.2 produces networks that rapidly approach random graphs. The
scale-free topologies were created for kernel sizes from the minimum 2 to 28, in which
almost half of the available connections must be spent for the kernel, so that at least one
per remaining node is left for preferential attachment. With the given parameters, actual
topologies have been created anew for every single run.
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Fig. 2. Success rates for small-world (left) and scale-free (right) topology CEAs, compared to a
similarly parametrized panmictic EA, on the MMDP. Each point is generated from 100 runs.

Experimentation/Visualization. Due to space limitations, we only depict SR (success
rate) results for the four problems, see Figures 2 and 3. Table 2 additionally provides
numerical values obtained for AES (average number of evaluations to solution) and SR
criteria on the MMDP, tables for the other problems are omitted for the same reason.

Observations. The first thing to note is that the SR performance curves look very dif-
ferent for the four test problems. We therefore decided to describe the obtained results
separately.

MMDP: Success rates for all small-world topology CEAs (except when β = 0) are
near 1 and thus much higher than 0.66 of the panmictic variant. At the same time,
they are a lot slower than the panmictic EA (see Table 2). Ring topology CEAs,
i.e. β = 0, may have failed to succeed because their time consumption would have
been even higher than the given limit. Scale-free CEAs with small kernels perform
comparable to small-world CEAs with medium rewiring factor, in success rates as
well as in speed. For larger kernels, success rates drop dramatically, even below the
ones for the panmictic EA. Simultaneously, the length of successful runs increases.
Self-adaptation of mutation rates works well in all small-world CEAs and quite
good for scale-free CEAs with small kernels. It remarkably lowers the AES if
started with pm = 1/l . Interestingly, it was observed that learned mutation rates,
especially when started at 0.5, tend to develop towards both ends of the allowed
interval, namely 0 and 1, within the same population.

ECC: For both topology types, the fixed mutation CEA outperforms all other variants
with respect to the SR criterion. Rewiring rates and kernel sizes seem to have little
influence here. The panmictic EA is slightly faster but achieves much worse success
rates. Self-adaptation does not seem to work at all for this problem, it delays the
CEAs while also reducing success rates.
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Fig. 3. Success rates for small-world (left) and scale-free (right) topology CEAs, compared to a
similarly parametrized panmictic EA, on problems (top to bottom) ECC, COUNTSAT and wP-
PEAKS. Points are generated from 100 runs each.



Effects of Scale-Free and Small-World Topologies 95

Table 2. Panmictic versus parametrized scale-free and small-world topology cellular EA on prob-
lem MMDP. Performance values for EA variants are ordered into blocks of three rows, giving
success rates (SR), average evaluations to solution (AES) and AES standard deviations, respec-
tively. Success rates are averaged from 100 runs, AES values and standard deviations computed
from the fraction reaching the global optimum. Characteristic path lengths (cpl) and clustering
coefficients (C) are determinedempirically.

EA variant: panmictic, non-adaptive, initial pm = 1/l
SR 0.66 0.66 0.66 0.66 0.66 0.66 0.66
AES 28894 28894 28894 28894 28894 28894 28894
AES std.dev. 11727 11727 11727 11727 11727 11727 11727

kernel sizes ⇒ 2 4 6 10 14 20 28
cpl/C ⇒ 3.7/0.05 3.7/0.06 3.6/0.07 3.4/0.12 3.3/0.20 3.1/0.39 3.1/0.76

EA variant: scale-free, non-adaptive, initial pm = 1/l
SR 0.81 0.74 0.75 0.65 0.36 0.07 0.0
AES 58420 59027 57307 65785 65500 74571 —
AES std.dev. 10507 12162 8016 9998 9960 12816 —

EA variant: scale-free, self-adaptive, initial pm = 1/l
SR 0.60 0.55 0.50 0.44 0.30 0.03 0.0
AES 40067 38473 38480 40364 41067 44000 —
AES std.dev. 10334 2878 3407 3675 3714 4320 —

EA variant: scale-free, self-adaptive, initial pm = 0.5
SR 0.93 0.94 0.92 0.85 0.68 0.39 0.03
AES 64129 63745 62348 67365 71706 84051 110000
AES std.dev. 10373 10592 9239 11950 14014 15416 10198

rewiring factor ⇒ 0.0 0.01 0.02 0.05 0.10 0.15 0.20
cpl/C ⇒ 50.4/0.5 15.5/0.47 10.8/0.45 7.4/0.37 5.9/0.28 5.4/0.20 5.0/0.16

EA variant: small-world, non-adaptive, initial pm = 1/l
SR 0.00 0.96 0.98 1.00 0.98 0.98 0.99
AES — 100960 84850 70320 61460 56570 55270
AES std.dev. — 9652 9376 6240 5295 4989 7614

EA variant: small-world, self-adaptive, initial pm = 1/l
SR 0.95 1.00 0.98 0.99 0.88 1.00 0.98
AES 94880 59220 52420 45030 40200 40200 37320
AES std.dev. 1081 5871 4609 3622 3790 7180 2489

EA variant: small-world, self-adaptive, initial pm = 0.5
SR 0.35 0.97 1.00 1.00 1.00 1.00 0.99
AES 109540 88920 81040 68680 61380 58480 56040
AES std.dev. 8842 1223 1180 7854 7001 6400 6780

COUNTSAT: Only one of the four algorithms is able to solve the problem with non-
significant success rates: The self-adaptive CEA starting with pm = 0.5 . Topology
differences seem to have little influence. Unfortunately, we did not try a panmictic
EA with self-adaptation to see if topology has an effect at all. Our impression is
that this is not the case but success rather depends on high mutation rates.

wP-PEAKS: Here, the small-world CEAs clearly dominate the panmictic EA, with the
fixed mutation rate CEA performing best. Self-adaptation only lowers the success
rates. Measured AES values for all small-world variants are largely constant and
around 2 to 3-times higher than for the panmictic variant, regardless of the rewiring
factor. The scale-free CEAs achieve no better success rates than the panmictic EA,
but also require 2 to 3-times more evaluations than the panmictic.
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Interpretation. At a first glance, it seems hard to perceive a clear trend within the
obtained results. The most we can state is that scale-free topologies do not seem to
provide a worthwhile alternative to panmictic or Watts-Strogatz small-worlds. Nev-
ertheless, when thinking about the properties of the utilized test problems and link-
ing them to the algorithm properties of the EA variants regarded as most successful
(Table 3), we may derive some generalizable conjectures. It seems that problems with a
certain degree of separability may profit from localizing operators. However, this also
happens for the wP-PEAKS problem which is non-separable.

Table 3. Test problem properties next to algorithm properties found successful. The ECC problem
is not fully separable but organized in blocks. Solution permutable means that fitness of a solution,
or subsolution in case of the MMDP, solely depends on the number of ones, not their location.

Problem Separable Solution permutable Topology matters Self-adaptation works

MMDP X X X X
ECC partly – X –
COUNTSAT – X – X
wP-PEAKS – – X –

Concerning self-adaptation, the picture is much clearer. Within our experiments,
it worked well for problems with permutable best solutions. That is, several optimal
solutions exist that share the number of ones, either in the whole genome as for the
COUNTSAT problem, or in the separate building blocks as for the MMDP. Lacking
further investigations, we can only speculate why self-adaptation provides an advan-
tage, or at least does not diminish optimization success here. Possibly, the temporary
appearance of several different, namely higher mutation probabilities in the course of
the optimization process leads to better results.

5 Conclusions

The results of this empirical study indicate that small-world topologies allow for a trade-
off between robustness and speed of the search; this is in agreement with the results of
[5] on selection pressure, especially when Watts–Strogatz networks are used. In terms
of success rate, these population topologies behave at least as well, and often better,
than the panmictic case. However, their convergence speed is lower. This effect had
already been reported in the case of regular lattice population structures for the same
class of problems [18].

On the other hand, scale-free topologies do not seem very helpful in their current
form, especially for large kernel sizes. Smaller clique sizes work better but, overall, they
do not outperform the standard panmictic setting. This confirms that the selection pres-
sure induced by these topologies on the population may be too high, similar to the pan-
mictic, thus causing premature convergence [5]. However, we have only experimented
with static scale-free topologies: we feel that playing with highly connected nodes in a
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graph would open new perspectives in the control of the exploration/exploitation trade-
off, and we intend to try out these ideas in the future.

As far as the EA strategies are concerned, self-adaptation helps if the solution/sub-
solution is permutable, while fixed mutation performs best overall. In the future we also
intend to extend the investigation to continuous problems and to study the dynamics of
birth surplus (comma) strategies.
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Abstract. This paper presents a competitive Particle Swarm Optimization algo-
rithm for the Traveling Salesman Problem, where the velocity operator is based 
upon local search and path-relinking procedures. The paper proposes two ver-
sions of the algorithm, each of them utilizing a distinct local search method. 
The proposed heuristics are compared with other Particle Swarm Optimization 
algorithms presented previously for the same problem. The results are also 
compared with three effective algorithms for the TSP. A computational experi-
ment with benchmark instances is reported. The results show that the method 
proposed in this paper finds high quality solutions and is comparable with the 
effective approaches presented for the TSP.   

1   Introduction 

The Traveling Salesman is a classical NP-hard combinatorial problem that has  
been an important test ground for many algorithms. Given a graph G = (N,E), where 
N = {1,...,n} is the set of nodes and E = {1,...,m} is the set of edges of G, and costs, 
cij, associated with each edge linking vertices i and j, the problem consists in finding 
the minimal total length Hamiltonian cycle of G. The length is calculated by the 
summation of the costs of the edges in a cycle.  If for all pairs of nodes {i,j}, the costs 
cij and cji are equal then the problem is said to be symmetric, otherwise it is said to be 
asymmetric. A survey of the TSP is presented by Gutin and Punnen [10]. 

The term A-Life is utilized to describe researches on systems that simulate essen-
tial properties of the real life, with two general lines: 

- how computational techniques may help the investigation of natural phenomena, 
and 

- how biological techniques may help to solve computational problems. 

Several bio-inspired methods were proposed to solve Combinatorial Optimization 
problems, such as Genetic Algorithms [12], Memetic Algorithms [17], Cultural Algo-
rithms [24] and Ant Systems [5], among others. Particle swarm optimization, PSO, 
algorithms belong also to the class of bio-inspired methods [14]. This is a population-
based technique introduced by a Psychologist, James Kennedy, and an Electrical En-
gineer, Russell Eberhart, who based their method upon the behavior of bird flocks. 
PSO algorithms for the TSP were presented previously by Onwubulu and Clerc [18] 
and Wang et al. [26]. Hybrid PSO approaches for the same problems were also pre-
sented by Machado and Lopes [16] and Pang et al. [19]. 
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This paper presents a new PSO algorithm for the Traveling Salesman Problem. The 
main difference between the approach reported in this paper and the previous ones re-
gards the velocity operators. In this paper local search and path-relinking procedures 
are proposed as velocity operators for a discrete optimization problem. 

Local search is a traditional optimization method that starts with an initial solution 
and proceeds by searching for a better solution in a neighborhood defined for the 
starting solution. If a better solution is found, then it is assumed as the new current so-
lution and the process of searching in its neighborhood is re-started. This process con-
tinues until no improvement of the current solution is found [1].     

Path-relinking is an intensification technique which ideas were originally proposed 
by Glover [8] in the context of scheduling methods to obtain improved local decision 
rules for job shop scheduling problems [9]. The strategy consists in generating a path 
between two solutions creating new solutions. Given an origin, xs, and a target solu-
tion, xt, a path from xs to xt leads to a sequence xs, xs(1), xs(2), …, xs(r) = xt, where 
xs(i+1) is obtained from xs(i) by a move that introduces in xs(i+1) an attribute that  
reduces the distance between attributes of the origin and target solutions. The roles  
of origin and target can be interchangeable. Some strategies for considering such  
roles are: 

• forward: the worst among xs and xt is the origin and the other is the target solution; 
• backward: the best among xs and xt is the origin and the other is the target solution; 
• back and forward: two different trajectories are explored, the first using the best 

among xs and xt as the initial solution and the second using the other in this role; 
• mixed: two paths are simultaneously explored, the first starting at the best and the 

second starting at the worst among xs and xt, until they meet at an intermediary so-
lution equidistant from xs and xt. 

The paper is organized as follows. Particle swarm optimization is described in Sec-
tion 2. The proposed algorithm and its variants are described in Section 3. A computa-
tional experiment is reported in Section 4. The experiment compares the results of the 
proposed approach with previous PSO algorithms. To date PSO algorithms for the 
TSP have failed to produce results comparable to competitive techniques. A compari-
son with three effective techniques proposed for the Traveling Salesman Problem  
shows that the proposed approach produces high quality solutions.  Finally, some 
concluding remarks are presented in Section 5. 

2   Particle Swarm Optimization 

Particle swarm optimization, PSO, is an evolutionary computation technique inspired 
in the behavior of bird flocks, fish schools and swarming theory. PSO algorithms 
were first introduced by Kennedy and Eberhart [14] for optimizing continuous 
nonlinear functions. The fundamentals of their method lie on researches on computer 
simulations of the movements of social creatures [11], [21], [23]. 

Given a population of solutions (the swarm) for a given problem, each solution is 
seen as a social organism, also called particle. The method attempts to imitate the be-
havior of the real creatures making the particles “fly” over a solution space, thus bal-
ancing the efforts of search intensification and diversification. Each particle has a 
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value associated with it. In general, particles are evaluated with the objective function 
being optimized. A velocity is also assigned to each particle in order to direct the 
“flight” through the problem space. The artificial creatures have a tendency to follow 
the best ones among them. In the classical PSO algorithm, each particle 

• has a position and a velocity 
• knows its own position and the value associated with it 
• knows the best position it has ever achieved, and the value associated with it 
• knows its neighbors, their best positions and their values 

As pointed by Pomeroy [20], rather than exploration and exploitation what has to 
be balanced is individuality and sociality. Initially, individualistic moves are prefer-
able to social ones (moves influenced by other individuals), however it is important 
for an individual to know the best places visited by its neighbors in order to “learn” 
good moves. 

The neighborhood may be physical or social [18]. Physical neighborhood takes dis-
tances into account, thus a distance metric has to be established. This approach tends 
to be time consuming, since each iteration distances must be computed. Social 
neighborhoods are based upon “relationships” defined at the very beginning of the  
algorithm. 

The move of a particle is a composite of three possible choices: 

• To follow in its own way 
• To go back to its best previous position 
• To go towards its best neighbor’s previous position or towards its best neighbor  

Equations (1) and (2) are utilized to update the particle’s position and velocity at each 
time step [6]. 

 xt+1 = xt+ vt (1) 

Vt+1= w.vt + c1.rand1.(pbestt – xt) + c2.rand2 .(gbestt – xt) (2) 

Where xt and vt are the particle’s position and velocity at instant t, respectively, pbestt 
is the particle’s best previous position, gbestt is the best position that any particle has 
achieved so far, w is the inertia factor [25], c1 and c2 are social/cognitive coefficients 
that quantify how much the particle trusts its experience and how much it trusts the 
best neighbor, rand1 and rand2 are randomly generated numbers.  

To apply PSO to discrete problems, one is required to define a representation for 
the position of a particle and to define velocity operators regarding the movement op-
tions allowed for the particles (and ways for, possibly, combining movements).  

A general framework of a PSO algorithm for a minimization problem is listed in 
the following. 

procedure PSO 

{ 

  Initialize a population of particles 

  do  

   for each particle p 
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    Evaluate particle p 

    If the value of p is better than the value of pbest 

       Then, update pbest with p 

   end_for 

   Define gbest as the particle with the best value 

   for each particle p do 

    Compute p’s velocity 

    Update p’s position 

   end_for 

  while (a stop criterion is not satisfied) 

}      

3   PSO for the Traveling Salesman Problem 

Usually, evolutionary algorithms represent TSP solutions as a permutation on the n 
vertices of a given instance. This representation is also adopted in this work. A social 
neighborhood containing only the global best particle (representing the best current 
solution) is defined for each member of the population. A particle has three move-
ment options: 

• To follow in its own way 
• To go back to its best previous position 
• To go towards the global best solution (particle) 

The main difference between the proposed algorithm and the previous approaches lies 
on the way the velocity operators are defined. The first option of a particle, that is to 
follow its own way, is implemented by means of a local search procedure. Two local 
search procedures were utilized, each of them defining a version of the algorithm. The 
first local search procedure is based upon an inversion operator to build neighbor so-
lutions.  The inversion operator inverts the elements of a particle between two indices, 
a and b. The difference b-a varies between 1 (simulating a 2-swap move) and 
n-1. Thus, when v1 is applied to a particle p, the local search procedure starts inverting 
sequences of two elements, then inverts sequences of three elements, and so on.  
Figure 1 illustrates an inversion of a sequence of elements defined by the interval a=2 
and b=5 (a sequence with four elements) of particle p resulting on particle p’. 

 
 

42731865 42731865 42768135 42768135

a b

p p’

 

Fig. 1. Inversion of elements among indices a and b 
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The second local search procedure is the Lin-Kernighan neighborhood, LK [15]. 
This is a recognized efficient improvement method for the TSP. The basic LK algo-
rithm has a number of decisions to be made and depending on the strategies adopted 
by programmers distinct implementations of this algorithm may result on different 
performances. The literature contains reports of many LK implementations with 
widely varying behavior [13]. In this work the algorithm utilized the LK implementa-
tion of the Concorde solver [3]. 
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Fig. 2. Path-relinking operator 

Another velocity operator is considered when a particle has to move from its cur-
rent position to another (pbest or gbest). In these cases the authors consider that a 
natural way to accomplish this task is to perform a path-relinking operation between 
the two solutions.  

The velocity utilized to move a particle from an origin to a target position is de-
fined as a path-relinking operation. The relinking operator utilized in this work is il-
lustrated in Figure 2. The operator swaps one element with its right (left) neighbor. 
The steps of a path-relinking procedure that explores solutions in the path between the 
origin solution (1 2 3 4 5) and the target solution (3 5 1 2 4) is shown. First, the ele-
ment 3 is moved to the first position by swapping it with elements 2 (Figure 2(a)) and 
1 (Figure 2(b)). At this point, element 5 has to be moved to the second position. It is 
swapped with element 4 (Figure 2(c)), element 2 (Figure 2(d)) and, finally, it is 
swapped with element 1, when the target solution is reached. The swap operators lead 
to O(n2) procedures. 

The path-relinking is applied simultaneously from the origin to the target solution 
and vice-versa (back and forward). It is also utilized the swap-left and swap-right  
operations.  

Combinations of movements are possible. For instance, to combine the first and 
third option of movement one can stop the local search procedure after a given num-
ber of iterations and then do path-relinking among the solution obtained in the local 
search and global best solution. Although combinations could be done, in the pro-
posed algorithms, no combination of movements was implemented. Initial probabili-
ties are assigned to each one of the three possible movements. These probabilities 
change as the algorithm runs. A general framework of the algorithm implemented in 
this work is listed in the following.   
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procedure PSO_TSP 

{ 

  Define initial probabilities for particles’ moves: 

      p1 = x /*to follow its own way*/  

      p2 = y /*to go forward pbest*/  

      p3 = z /*to go forward gbest*/ 

      /* x+y+z=1 */ 

  Initialize a population of particles 

  do  

   for each particle p 

    Evaluate particle p 

    If the value of p is better than the value of pbest 

       Then, update pbest with p 

   end_for 

   Define gbest as the particle with the best value 

   for each particle p do 

    Choose p’s velocity 

    Update p’s position 

   end_for 

   Update probabilities: 

      p1 = p1×0.95; p2 = p2×1.01; p3 = 100%-(p1+p2)      

  while (a stop criterion is not satisfied) 

} 

At the beginning, the algorithm defines the probabilities associated with each ve-
locity for the particles, where p1, p2 and p3 correspond, respectively, to the likelihood 
that the particle follows its own way, goes toward the best previous position and goes 
toward the best solution found so far. Then, the algorithm proceeds modifying the 
particle’s position according to the velocity operator randomly chosen. Finally, the 
probabilities are updated. 

Initially, a high probability is set to p1, and low values are assigned to p2 and p3. 
The goal is to allow that individualistic moves occur more frequently in the first itera-
tions. During the execution this situation is being modified and, at the final iterations, 
p3 has the highest value. The idea is to intensify the search in good regions of the 
search space in the final iterations. 
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Particles are initialized with a random adaptive version of the heuristic nearest 
neighbor [2]. The procedure is similar to the construction phase of a GRASP algo-
rithm [7]. At first, a city is randomly chosen, then, other cities are added to the  
solution in each step. A restricted candidate list is built with the 5% cities closest to 
the last one inserted in the solution. A city is chosen at random from this list and is 
added to the solution. This step is repeated until a TSP solution is completed.  

4   Computational Experiments 

The proposed algorithms were implemented in C++ on a Pentium IV (3.0 GHz and 
512 Mb of RAM) running Linux. The algorithms were applied to symmetric instances 
of the benchmark TSPLIB [22] with sizes ranging from 51 to 7397. The stop criteria 
were: 

• To find the optimum 
• To reach a maximum number of iterations = 2000 
• To reach a maximum number of iterations with no improvement of the best current 

solution = 20 
• To reach a maximum processing time = 60 seconds for instances with n < 1000,  

300 seconds when 1000  n < 5000, 1000 seconds when 5000  n < 7000 and 2000 
seconds for n ≥ 7000. 

The population had a fixed size with 20 particles. 
A first experiment compared the two proposed algorithms in 11 symmetric in-

stances with sizes ranging from 51 to 2103. Twenty independent runs of each algo-
rithm were performed. The results are showed in Table 1 in terms of percent deviation 
from the optimal solution. This gap is computed with equation (3), where Sol and Opt 
denote, respectively, the (best or average) solution obtained by the algorithm and the 
optimal solution. 

(Sol – Opt)×100/Opt (3) 

The columns show the name of the TSPLIB instances, the best solution (Min) and 
the average solution of the two versions of the proposed PSO algorithms denoted by 
PSO-INV and PSO-LK, the versions with the inversion and LK local search proce-
dures, respectively. 

Not surprisingly, PSO-LK exhibits a better performance than PSO-INV, since the 
local search procedure embedded in the former version is more powerful than the lo-
cal search procedure of the latter version. However, a comparison of the results of  the 
weakest version of the proposed algorithm with the ones reported in the work of Pang 
et al. [19] reveals that the former finds the best results. Once Wang et al. [26] reported 
results just for one asymmetric TSP instance, the authors implemented their algorithm 
in order to compare its performance with the proposed algorithm. Table 2 shows the 
best results (percent deviations) of the weakest version of the proposed algorithm, 
PSO-INV, and of the algorithms PSO-P [19] and PSO-W [26] for the three  
TSP symmetric instances with n > 50 of the computational experiment reported by 
Pang et al. [19]. 
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Table 1. Comparison of the two versions of the proposed algorithms 

PSO-INV PSO-LK Instances 
Min Av Min Av 

eil51 0.2347 1.9836 0 0 
berlin52 0 2.0041 0 0 
eil76 2.4164 4.5167 0 0 
rat195 5.8114 8.7581 0 0 
pr299 5.8476 7.9952 0 0 
pr439 4.4200 8.0111 0 0 
d657 6.9656 9.6157 0 0 
pr1002 9.8574 11.1900 0 0 
d1291 13.2104 15.5505 0 0.0113 
rl1304 10.4432 11.9942 0 0 
d2103 16.7383 18.4180 0.0087 0.0267 

Table 2. Comparison of two PSO heuristics with PSO-INV 

Instance PSO-W PSO-P PSO-INV 
eil51 114 2.54 0.2347 
berlin52 115 2.12 0 
eil76 162 4.75 2.4164 

The results showed in Table 2 correspond to the best solution found in 20 inde-
pendent runs. The proposed algorithm PSO-INV was also applied to the asymmetric 
instance br17 reported by Wang et al. [26]. The results are showed in Table 3, where 
columns show the algorithm, the best and average percent deviation from the optimal 
solution, and the average runtime in seconds. 

Table 3. Comparison of PSO-INV and PSO-W for the TSPLIB instance br17 

Algorithm Min Average T (s) 
PSO-INV 0 0 < 0.01 
PSO-W 0 16.66 60.04 

A computational experiment investigated the differences between the results obtained 
by the LK procedure [2] and the PSO-LK algorithm. This experiment aimed at finding 
out if the proposed PSO approach was able to improve the LK [2] results. Table 4 shows 
the percent difference from the optimum, for 30 TSPLIB symmetric instances with n 
ranging from 439 to 7397. Bold elements mark when an improvement occurred. Twenty 
independent runs of each algorithm were performed. The columns T show the average 
time of each algorithm in seconds. From the thirty instances of the experiment, the PSO 
approach was able to improve twenty-three minimal results and all the averages. A statis-
tical analysis shows that, the means of columns Min and Average of LK are 0.1115, 
0.3431, respectively. The means of PSO-LK are 0.0022 and 0.0154. Although the run-
times of PSO-LK are higher than the LK, in average, improvements of 98% and 95% 
were achieved on the best and mean results, respectively. 
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Table 4. Comparison of LK and PSO-LK results 

LK PSO-LK Instance 
Min Average T (s) Min Average T (s) 

pr439 0.0000 0.0463 0.88 0.0000 0.0000 0.78 
pcb442 0.0000 0.1119 0.67 0.0000 0.0000 0.80 
d493 0.0029 0.1216 2.21 0.0000 0.0000 19.38 
rat575 0.0295 0.1277 0.62 0.0000 0.0000 6.47 
p654 0.0000 0.0078 3.72 0.0000 0.0000 1.90 
d657 0.0020 0.1500 1.70 0.0000 0.0000 12.42 
rat783 0.0000 0.0704 0.90 0.0000 0.0000 5.25 
dsj1000 0.0731 0.2973 5.89 0.0027 0.0031 178.48 
pr1002 0.0000 0.1318 1.96 0.0000 0.0000 9.50 
u1060 0.0085 0.1786 3.12 0.0000 0.0000 38.18 
vm1084 0.0017 0.0669 2.59 0.0000 0.0010 34.74 
pcb1173 0.0000 0.1814 1.78 0.0000 0.0001 48.18 
d1291 0.0039 0.4333 1.79 0.0000 0.0000 29.86 
rl1304 0.0202 0.3984 2.67 0.0000 0.0000 21.62 
rl1323 0.0463 0.2300 2.34 0.0000 0.0092 225.32 
nrw1379 0.0547 0.1354 2.45 0.0017 0.0085 417.80 
fl1400 0.0000 0.1215 14.87 0.0000 0.0000 15.42 
fl1577 0.7371 2.2974 6.30 0.0000 0.0135 461.99 
vm1748 0.0903 0.1311 4.66 0.0000 0.0018 854.17 
u1817 0.1976 0.5938 1.88 0.0000 0.0863 789.18 
rl1889 0.1836 0.3844 4.58 0.0000 0.0073 894.43 
d2103 0.0597 0.3085 2.82 0.0000 0.0043 1137.56 
u2152 0.2381 0.5548 2.16 0.0000 0.0717 1415.32 
pr2392 0.0775 0.3904 3.78 0.0000 0.0021 577.78 
pcb3038 0.1598 0.2568 5.42 0.0101 0.0396 323.94 
fl3795 0.5665 1.0920 15.60 0.0000 0.0142 621.63 
fnl4461 0.0882 0.1717 9.08 0.0296 0.0462 583.78 
rl5915 0.3528 0.5343 10.08 0.0122 0.0633 1359.25 
rl5934 0.2221 0.4761 10.65 0.0012 0.0650 983.04 
pla7397 0.1278 0.2912 21.85 0.0075 0.0253 1563.22 

Finally, Table 5 shows a comparison of the results obtained by PSO-LK and three 
effective heuristics: Tourmerge [4], NYYY iterated Lin-Kermighan variant (reported 
at http://www.research.att.com/~dsj/chtsp/) and JM iterated Lin-Kernighan variant. 
The results of these heuristics were obtained in the DIMACS Challenge page: 
http://www.research.att.com/~dsj/chtsp/results.html. 

The columns related to PSO-LK show the best and average tours found in twenty 
independent runs. The columns related to the Tourmerge algorithm show the best and 
average tours obtained in five independent runs. Results are not reported for instances 
fnl446 and pla7397. The columns related to the NYYY and JM iterated Lin-
Kernighan variants show the best tours obtained in ten n iterations runs.   
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Table 5. Comparison of heuristics for TSP symmetric instances 

PSO-LK Tourmerge 
Instance 

Min Average Min Average 
ILKNYYY 

Nb10 
ILKJM 
Nb10 

dsj1000 0.0027 0.0031 0.0027 0.0478 0 0.0063 
pr1002 0 0 0 0.0197 0 0.1482 
u1060 0 0 0 0.0049 0.0085 0.0210 
vm1084 0 0.0010 0 0.0013 0.0217 0.0217 
pcb1173 0 0.0001 0 0.0018 0 0.0088 
d1291 0 0 0 0.0492 0 0 
rl1304 0 0 0 0.1150 0 0 
rl1323 0 0.0092 0.01 0.0411 0.01 0 
nrw1379 0.0017 0.0085 0 0.0071 0.0247 0.0018 
fl1400 0 0 0 0 0 0 
fl1577 0 0.0135 0 0.0225 0 0 
vm1748 0 0.0018 0 0 0 0 
u1817 0 0.0863 0.0332 0.0804 0.1643 0.2657 
rl1889 0 0.0073 0.0082 0.0682 0.0082 0.0041 
d2103 0 0.0043 0.0199 0.3170 0.0559 0 
u2152 0 0.0717 0 0.0794 0 0.1743 
pr2392 0 0.0021 0 0.0019 0.0050 0.1495 
pcb3038 0.0101 0.0396 0.0036 0.0327 0.0247 0.1213 
fl3795 0 0.0142 0 0.0556 0 0.0104 
fnl4461 0.0296 0.0462 --- --- 0.0449 0.1358 
rl5915 0.0122 0.0633 0.0057 0.0237 0.0580 0.0168 
rl5934 0.0012 0.0650 0.0023 0.0104 0.0115 0.1723 
pla7397 0.0075 0.0253 --- --- 0.0209 0.0497 

From the twenty-one instances for which Tourmerge presented results, PSO-LK 
finds five best minimal results, Tourmerge finds three best minimal results and both 
algorithms find the same quality tours for thirteen instances. Regarding average re-
sults Tourmerge finds the best values on six instances and PSO-LK finds the best val-
ues on thirteen instances. The mean values of the “Min” and “Average” columns for 
the twenty-one instances are 0.0013 and 0.0186 for PSO-LK and 0.0041 and 0.0467 
for Tourmerge. These results show that, in average, PSO-LK has a better performance 
than Tourmerge regarding minimal and average results. 

Comparing the proposed algorithm with the NYYY iterated Lin-Kernighan variant, 
one can observe that from the twenty-three instances of the experiment, PSO-LK 
finds the best tours for thirteen instances, ILK-NYYY finds the best results for one in-
stance and same results are found for nine instances. The averages of the best results 
of these two algorithms for the twenty-three instances are 0.0028 and 0.0199, PSO-
LK and ILK-NYYY, respectively. 

The comparison with the JM  iterated Lin-Kernighan version shows that the PSO-
LK algorithm finds the best results for sixteen instances and both algorithms find the 
same tours quality for seven instances. The averages for PSO-LK and ILK-JM are 
0.0028 and 0.0569, respectively. 
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5   Conclusions 

This paper presented a PSO algorithm for the TSP where the concept of velocity is 
differentiated when the particle has to follow its own way and when it goes forward 
someone’s position. Local search procedures were applied in the former and path-
relinking operations were applied in the latter case. 

Although some works where PSO algorithms were applied to the TSP were pre-
sented previously, those algorithms did not reported results which could be compared 
with the ones obtained by effective heuristics. In this work, an effective PSO ap-
proach was presented for the TSP which results were compared with three high qual-
ity heuristics for this problem. The comparison showed that the proposed algorithm 
outperforms the three heuristics regarding best tours. The comparison among the av-
erage results of PSO-LK and the Tourmerge also shows that the first heuristics finds 
better results. 
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Abstract. Cellular Genetic Algorithms (cGA) are spatially distributed
Genetic Algorithms that, because of their high level of diversity, are su-
perior to regular GAs on several optimization functions. Also, since these
distributed algorithms only require communication between few closely
arranged individuals, they are very suitable for a parallel implementa-
tion. We propose a new kind of cGA, called hierarchical cGA (H-cGA),
where the population structure is augmented with a hierarchy according
to the current fitness of the individuals. Better individuals are moved to-
wards the center of the grid, so that high quality solutions are exploited
quickly, while at the same time new solutions are provided by individu-
als at the outside that keep exploring the search space. This algorithmic
variant is expected to increase the convergence speed of the cGA algo-
rithm and maintain the diversity given by the distributed layout. We
examine the effect of the introduced hierarchy by observing the variable
takeover rates at different hierarchy levels and we compare the H-cGA
to the cGA algorithm on a set of benchmark problems and show that
the new approach performs promising.

1 Introduction

The cellular Genetic Algorithm (cGA) [1] is a kind of decentralized GA in which
the population is arranged in a toroidal grid, usually of dimension 2. The charac-
teristic feature of cGAs is a neighbourhood for each individual that is restricted
to a certain subset of individuals in the immediate vicinity of its position. In-
dividuals are allowed to interact only with other individuals belonging to their
neighbourhood. This endows the cGA with useful properties for the optimiza-
tion [2, 3] and also facilitates a parallel implementation because of its inherent
parallel design. The cGA has already been successfully implemented on parallel
platforms [1, 4] and in sequential computers [5].

While the distributed arrangement of the population of the cGA preserves
a high level of diversity, it can delay the convergence speed of the algorithm
because the cooperative search by the entire population is restricted. In order to
increase the convergence speed of the cGA algorithm, we introduce a hierarchy
into the grid population that orders the individuals according to their current
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fitness. Such a population hierarchy has already been successfully applied to par-
ticle swarm optimization algorithms [6]. Here the convergence speed of the PSO
algorithm was accelerated after using a hierarchical population when solving
several continuous optimization problems.

In this work we examine the effect of introducing a hierarchy into a cellular
Genetic Algorithm. Our new algorithm is called Hierarchical Cellular Genetic
Algorithm (H-cGA). In the H-cGA a hierarchy is established within the popu-
lation of a regular cGA by arranging individuals according to their fitness: the
worse the fitness value of an individual is, the farther it is located from the center
of the population. Thus, in this hierarchical population, the best individuals are
placed in the center of the grid where they can mate with other high quality indi-
viduals. This way we hope to reach better solutions faster, while still preserving
the diversity provided by a locally restricted parent selection and keeping the
opportunity of an efficient parallel implementation.

The paper is structured as follows. In Section 2 we present our newly proposed
algorithm, H-cGA, as well as a new selection operator we have designed for
this algorithm. We provide a closer examination of the takeover behaviour of
the algorithm in Section 3. Section 4 contains experiments on a benchmark of
functions, where the performance of the H-cGA algorithm is compared with
that of a canonical cGA. Finally, we give our conclusions and further research
directions for our new approach.

2 The H-cGA Algorithm

In this section we present the hierarchical cGA algorithm. First we will briefly
outline the procedure of a cellular GA. Then we describe the hierarchical ordering
of the population that is introduced for the H-cGA algorithm and how this
ordering is obtained. After that we introduce a new selection operator for this
algorithm.

In a Cellular GA [1] the population is mapped onto a 2-dimensional toroidal
grid of size x × y, where an individual can only mate with individuals within
a locally restricted neighbourhood. In each generation, an offspring is obtained
for every individual, where one of the parents is the current individual and
the other one is selected from its neighbourhood. Each offspring is mutated
with a given probability, and replaces the current individual, if it has a better
fitness value. The offspring (or the current individual, if better) is stored in a
temporary auxiliary population, and this population replaces the whole current
one after each generation. In the H-cGA algorithm the population is re-arranged
after every generation with the hierarchical swap operation, as described in the
following section. In Algorithm 1. we give a pseudocode of H-cGA.

2.1 Hierarchy

The hierarchy is imposed on the cellular population of the GA by defining a
center at position (x/2, y/2) and assigning hierarchy levels according to the
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Algorithm 1. Pseudocode of H-cGA
1: proc Steps Up(hcga) //Algorithm parameters in ‘hcga’
2: while not TerminationCondition() do
3: for x ← 1 to WIDTH do
4: for y ← 1 to HEIGHT do
5: n list←Compute Neigh(cga,position(x,y));
6: parent1←Individual At(cga,position(x,y));
7: parent2←Local Select(n list);
8: Recombination(cga.Pc,n list[parent1],n list[parent2],aux ind.chrom);
9: Mutation(cga.Pm,aux ind.chrom);

10: aux ind.fit←cga.Fit(Decode(aux ind.chrom));
11: Insert New Ind(position(x,y),aux ind,cga,aux pop);
12: end for
13: end for
14: cga.pop←aux pop;
15: Swap Operation(cga.pop);
16: Update Statistics(cga);
17: end while
18: end proc Steps Up;
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Fig. 1. The H-cGA and its different hierarchy levels

distance from the center. The center has level 0 and the level increases with
increasing distance to the center (compare Fig. 1). The hierarchy is updated
after each iteration of the cGA and individuals with high fitness are moved
towards the center. Note, that the population topology is still toroidal when
selecting parents.

In Fig. 1 we show how this swap operation is performed. It is applied between
cells indicated by the arrows, in the order denoted by the numbers outside of the
grid. The update of the hierarchy is performed alternatingly horizontally (black)
and vertically (grey) by the swap operation. We assume an even number for the
population dimensions x and y, so that the population can be uniquely divided
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into left (upper) and right (lower) half, for the horizontal (vertical) swap. Note,
that this implies that there are 4 individuals in the center of the population, i.e.
on the highest level of the hierarchy.

In the following we describe the horizontal swap operation, the vertical swap
is done accordingly. Each individual (i, j) in the left half compares itself with
its left neighbor (i − 1, j) and if this one is better they swap their positions.
These comparisons are performed starting from the center of the grid towards
the outside, see Fig. 1. Thus, at first individuals in columns (i, x

2 − 1) and
(i, x

2 −2) , for i = 0, . . . , y, are compared. If the fitness value at position (i, x
2 −2)

is better they swap positions. These pairwise comparisons are then continued to-
wards the outside of the grid. Hence, an individual can advance only one level
at a time but can drop several levels within one iteration.

2.2 Dissimilarity Selection

The proposed hierarchy promotes the recombination of good individuals within
the population. In this respect, H-cGA is similar to a panmictic GA with a
fitness-biased selection. In our H-cGA algorithm this selective recombination
of the elite individuals of the population is already included in the hierarchy.
Therefore, we examined a new selection operator that is not based on the rela-
tive fitness of the neighbouring individuals but instead considers the difference
between the respective solution strings. As for the Binary Tournament (BT) se-
lection, two neighbours are selected randomly, but in contrast to BT, where the
better one is selected, the one that is more different from the focal individual
is selected. All the considered problems are binary encoded, hence we use the
Hamming-Distance for determining the dissimilarity.

The overall optimization progress of the algorithm is ensured by only replacing
an individual if the newly generated individual, by crossover and mutation, is
better than the previous one.

3 First Theoretical Results: Takeover Times

We are providing a closer examination of the properties of the proposed algo-
rithm by studying the takeover time of the algorithm and comparing it to that
of a canonical cGA. The takeover time is the time required until a single best
individual has filled the entire population with copies of itself under the effects
of selection only. First we are looking at a deterministic takeover process, where
the best individual within the neighbourhood is always selected. Later we also
consider BT selection and the newly proposed Dissimilarity selection. Initially
all individuals get assigned random fitness values from [0:4094] and one individ-
ual gets the maximum fitness value of 4095. Then the selection-only algorithm is
executed and the proportion of the entire population that holds the maximum
fitness value at each iteration is recorded. The considered grid is of size 64× 64
and hence the population consists of 4096 individuals.
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Fig. 2. Takeover curve for initially placing the best individual at different levels

In the H-cGA the different levels of the hierarchy influence the time required
for takeover. In order to accurately determine this influence, we use the determin-
istic selection operator. The best individual is initially placed on each possible
position on the grid and the takeover time for these 4096 different setups is mea-
sured. Then the results for all positions on a specific level of the hierarchy are
averaged to obtain the takeover rate for introducing the best individual at this
particular level. In Fig. 2 the obtained takeover curves are shown for introducing
the best individual at different levels of the hierarchy. The slowest takeover rate
is achieved when placing the best value at the center of the grid on level 0. This
takeover rate is identical to the deterministic takeover for the regular cGA. The
hierarchy level 62 consists of the 4 cells on the corners of the grid, where the
fastest takeover rate is obtained. This increasing takeover speed with increasing
hierarchy level is very regular, as can be seen in the detail display of iteration
30. The reason why having the best individual near the outside of the hierarchy
accelerates takeover is, that, since for selection the topology is still toroidal, ad-
jacent individuals on the opposite end of the grid also adopt the highest fitness
value at the beginning of the run. Then the hierarchy swap operation moves the
maximal value towards the center from several sides and therefore the actual
takeover speed is increased.

We also measured the time required for takeover with BT and Dissimilar-
ity selections. The best individual was placed at a random position and the
experiments were repeated 100 times. For the experiments with Dissimilarity
selection, the individuals are using a binary string that corresponds to the 12
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bit representation of their current fitness value. Our results are shown in Table 1
(average number of iterations, standard deviation, minimum and maximum). As
can be seen, initially placing the best individual at the center (H-cGA level 0)
slows down the takeover compared to the regular cGA algorithm. This is be-
cause once the maximal value spreads it will be delayed until all of the central
cells hold the best fitness value, otherwise it will be swapped towards the center
again. In the two algorithms, the use of the BT selection induces a higher selec-
tion pressure than in the case of using the Dissimilarity selection. After applying
the Kruskal-Wallis test (in some cases the data were not normally distributed)
to the results in Table 1, we obtained that there exist statistically significant
differences at a 95% confidence level.

Table 1. Takeover times for the algorithms with BT and Dissimilarity selections

Algorithm Avg Stddev Min–Max

cGA BT 75.2 ± 1.5 72.0– 80.0
cGA Dis 78.7 ± 1.7 75.0– 83.0
H-cGA BT 71.0 ± 6.3 48.0– 81.0
H-cGA Dis 79.6 ± 3.8 71.0– 89.0
H-cGA BT level 0 81.5 ± 1.5 78.0– 87.0
H-cGA BT level 62 46.3 ± 2.1 42.0– 57.0

3.1 Fitting of the Takeover Curves

The takeover time decreases as the level at which the best individual is intro-
duced increases, as shown in Fig. 2. In order to observe this distinction more
precisely, we fitted the obtained takeover curves with a parameterized function,
so that we can simply compare the respective fitting parameter.

The takeover time in Genetic Algorithms is usually fitted by a logistic growth
curve (1) that models bounded population growth at a rate of a [7]. The size
of the population at time t is given by N(t) and the number of individuals at
the beginning is N(0). This growth curve is not applicable to the cGA, because
instead it exhibits quadratic growth [8]. We used a simple formulation for the
quadratic growth in the first half and the symmetrical saturation phase in the
second half of the takeover (2). This quadratic growth curve is also controlled
by a single parameter a.

N(t) =
1

1 + ( 1
N(0) − 1) e−at

(1)

N(t) =

{
a t2 if t < T/2,
−a (t− T )2 + 1 otherwise.

(2)

We fitted the parameter a to the takeover curves obtained for different levels
of the hierarchy. This is done by minimizing the mean squared error (MSE)
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between the observed data points and the parameterized curve. In Fig. 3 the
deterministic takeover curves for introducing the best individual at level 0 and
level 62 and the respective fitted curves are reported.

Similar to the takeover curves at different levels, the parameters for fitting
these curves are also well ordered. In Fig. 4 we depict the parameter a returned
by the fitting for the different levels. This is done for deterministic takeover and
takeover with BT selection. The growth rates for the deterministic takeover are
fully ordered and, with few exceptions, also for the BT takeover a increases as
the level increases.

4 Computational Experiments

In this section, we present the results of our tests on a selected benchmark of
problems. We briefly describe the problems composing the benchmark used in our
testing in Section 4.1, and test the algorithms on those problems in Section 4.2.

4.1 Test Problems

For testing our algorithms, we have selected a benchmark of problems with many
different features, such as multimodality, deceptiveness, use of constraints, or
problem generators. The proposed problems are Onemax, the Massively Multi-
modal Deceptive Problem (MMDP), P-PEAKS, and the Minimum Tardy Task
Problem (MTTP). We show in Table 2, for each of these problems, the fitness
function to optimize, the chromosome length (size of the problem), and the value
of this optimum.

Onemax. The objective of the Onemax [9] problem is to maximize the number
of 1s in the binary string. We are considering strings of length 500 bits.

MMDP. The Massively Multimodal Deceptive Problem (MMDP) is a problem
specifically designed for being difficult to solve by evolutionary algorithms [10].
It consists of k deceptive subproblems each of size 6 bits. These substrings are
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Table 2. Benchmark of problems

Problem Fitness function n Optimum

Onemax f(x) =
n

i=1

xi 500 500

MMDP f(s) =
k

i=1

fitness(si); k = n/6 240 40

P-PEAKS f(x) = 1
n

max
1≤i≤p

{n − HamDist(x, Peaki)} 100 1.0

MTTP f(x) =
n

i=1

xi · wi

20
100
200

0.02429
0.005
0.0025

evaluated according to the number of ones in the substring as given in Fig. 5.
It is easy to see that these subfunctions have two global obtima and a deceptive
attractor in the middle point. We are using an instance of size k = 40 with
optimum value 40.0. The number of local optima for this instance is very large
(22k), while there are only 2k global solutions.

Unitation Subfunction value

0 1.000000

1 0.000000

2 0.360384

3 0.640576

4 0.360384

5 0.000000

6 1.000000

Massively Multimodal Deceptive Problem
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Fig. 5. Basic deceptive bipolar function (si) for MMDP

P-PEAKS. In this multimodal problem generator [11] P peaks are generated
and the fitness value is calculated as the distance to the nearest peak divided by
the string length, having a maximum value of 1.0. We are using a test instance
with 100 peaks of length 100.

MTTP. The Minimum Tardy Task Problem (MTTP) [12] is a task scheduling
problem. Each task has a length (the time it takes), a deadline (before which it
has to be finished), and a weight wi. The objective is to maximize the weights
of the scheduled tasks. We are considering here three instances of sizes 20, 100
and 200, taken from [13].

4.2 Results

In this section we present and analyze the results of our experiments. We com-
pare the behaviour of H-cGA to the cGA algorithm. The same parametrization is
used for the two algorithms (see Table 3), and both BT and Dissimilarity selec-
tion have been tested. We used a population of size 400 arranged in a grid of size



Hierarchical Cellular Genetic Algorithm 119

Table 3. Parametrization used in our algorithms

Population 20 × 20 individuals
Selection of Parents itself + (BT or Dissimilarity)
Recombination DPX, pc = 1.0
Bit Mutation Bit-flip, pm = 1/#bits

Replacement Replace if Better
Stopping Criterion Find Optimum or Reach 2500 Generations

Table 4. Results for the different test functions. Given are the success rate, average
number of required steps to reach the optimum, standard deviation, maximum and
minimum, and statistical significance of the results.

Problem Algorithm Success Avg Stddev Min– Max p-value

Onemax

cGA BT 100% 129.4 ± 7.3 111.2–145.2

+
cGA Dis 100% 140.7 ± 8.1 121.6–161.2
H-cGA BT 100% 94.1 ± 5.0 83.2–106.4
H-cGA Dis 100% 103.1 ± 5.6 90.4–116.8

MMDP

cGA BT 67% 202.4 ± 154.7 120.8–859.2

+
cGA Dis 97% 179.8 ± 106.3 116.8–846.0
H-cGA BT 55% 102.6 ± 76.1 68.8–652.8
H-cGA Dis 92% 122.3 ± 111.7 73.2–837.6

P-Peaks

cGA BT 100% 41.9 ± 3.0 32.0– 48.4

+
cGA Dis 100% 52.9 ± 5.2 38.4– 66.0
H-cGA BT 100% 47.2 ± 8.6 30.8– 71.2
H-cGA Dis 100% 81.1 ± 17.1 45.2–130.8

MTTP-20

cGA BT 100% 5.1 ± 1.2 1.6– 8.0

+
cGA Dis 100% 6.0 ± 1.3 2.0– 9.2
H-cGA BT 100% 4.7 ± 1.1 1.6– 7.2
H-cGA Dis 100% 5.5 ± 1.2 2.8– 8.0

MTTP-100

cGA BT 100% 162.2 ± 29.3 101.6–241.6

+
cGA Dis 100% 174.6 ± 26.3 96.4–238.8
H-cGA BT 100% 138.3 ± 35.4 62.0–245.6
H-cGA Dis 100% 132.4 ± 26.2 64.0–186.8

MTTP-200

cGA BT 100% 483.1 ± 55.3 341.6–632.4

+
cGA Dis 100% 481.0 ± 71.6 258.8–634.8
H-cGA BT 100% 436.2 ± 79.7 270.4–631.2
H-cGA Dis 100% 395.3 ± 72.6 257.6–578.8

20 × 20 with a Linear5 neighbourhood (the cell itself and its North, East, South
and West neighbours are considered). In all our experiments, one parent is the
center individual itself and the other parent is selected either by BT or Dissim-
ilarity selection (it is ensured that the two parents are different). An individual
is replaced only if the newly generated fitness value is better. The recombination
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method used is the two point crossover (DPX), and the selected offspring is the
one having the largest part of the best parent. The mutation and crossover proba-
bilities are 1.0 and bit mutation is performed with probability 1/#bits for genome
string of length #bits. In order to have statistical confidence, all the presented re-
sults are average over 100 runs, and the analysis of variance –ANOVA– statistical
test (or Kruskal-Wallis if the data is not normally distributed) is applied to the
results. We consider in this paper a 95% confidence level.

In Table 4 we present the results we have obtained for all the test problems.
Specifically, we show the success rate (number of runs in which the optimum
was found), and some measures on the number of evaluations made to find the
optimum, such as the average value, the standard deviation, and the maximum
and minimum values. The results of our statistical tests are in column p-values,
where symbol ‘+’ means that there exists statistically significant differences.
The evaluated algorithms are cGA and H-cGA both with BT and Dissimilarity
selections.

As can be seen in Table 4, both the cGA and the H-cGA algorithms were able
to find the optimum value in each run for all the problems, with the exception
of MMDP. For this problem, the cGA algorithm achieves slightly better success
rates than H-cGA. Regarding the average number of evaluations required to
reach the optimum, the hierarchical algorithm always outperforms cGA, except
for the P-peaks problem. Hence, the use of a hierarchical population allows us
to accelerate the convergence speed of the algorithm to the optimum, while it
retains the interesting diversity management of the canonical cGA.

If we now compare the results of the algorithms when using the two different
studied selection schemes, we notice that with the Dissimilarity selection the
success rate for the MMDP problem can be increased for both the cGA and the
H-cGA algorithm.

 0

 0.5

 1

 1.5

 2

MTTP200MTTP100MTTP20P-PEAKSMMDPONEMAX

R
el

at
iv

e 
E

xp
ec

te
d 

N
r 

of
 E

va
lu

tio
ns

cGA
cGA dis
H-cGA

H-cGA dis

Fig. 6. Expected number of evaluations required to reach the optimum, relative to the
steps required by cGA, for the different benchmark problems
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Fig. 7. Evolution of the population for the cGA (top) and the H-cGA (bottom)

In Fig. 6 we plot the expected number of evaluations, defined as the average
number of evaluations divided by the success rate, required to find the optimum
value for each problem. The displayed results are relative to the expected number
of evaluations for the cGA.

The expected number of evaluations is increased when using the Dissimilarity
selection compared to the equivalent algorithms with BT. For the cGA the Dis-
similarity selection was able to reduce the number of required evaluations only
for the MMDP problem. But for the H-cGA it proved to be useful also for the
two large MTTP instances. In general, the expected number of evaluations is
lower for the two studied versions of H-cGA.

Finally, in order to illustrate the effects of using a hierarchical population
in the cGA, we show a sample run of the cGA (top) and the H-cGA (bottom)
algorithm in Fig. 7. The pictures are snapshots of the population taken every 50
iterations for the MDDP problem until the optimum is found (iteration 383 for
cGA and 233 for H-cGA). The darker an individual is coloured the higher its
fitness is; the white cell in the last image contains the maximum fitness. As can
be seen, the H-cGA algorithm quickly focuses on promising solutions, while at
the same time different solutions of lower quality are kept at the outside of the
hierarchy.

5 Conclusions and Future Work

In this work we have presented a new algorithm called hierarchical cGA, or H-
cGA. We included the idea of establishing a hierarchy among the individuals of
the population of a canonical cGA. With this hierarchical model we achieve dif-
ferent levels of the exploration/exploitation tradeoff of the algorithm in distinct
zones of the population simultaneously. We studied these specific behaviours at
different hierarchy levels by examining the respective takeover rates.

We have compared the H-cGA with two different selection methods to the
equivalent cGAs and the hierarchical algorithm performed better on almost all
test functions. The newly proposed Dissimilarity selection was not useful in all
the scenarios, but for the H-cGA algorithm it improved the performance for both
the MMDP and the MMTP functions. This selection promotes more diversity
into the population but, as a consequence, the convergence is usually slower.
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Future work will concentrate on other forms of hierarchies, with respect to the
shape or to the criterion that allows ascending in levels. Furthermore, we will
consider position-dependant algorithm changes, to emphasize different search
strategies on different levels of the hierarchy.
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Abstract. We introduce a novel representation for the graph colour-
ing problem, called the Integer Merge Model, which aims to reduce the
time complexity of an algorithm. Moreover, our model provides useful
information for guiding heuristics as well as a compact description for
algorithms. To verify the potential of the model, we use it in dsatur, in
an evolutionary algorithm, and in the same evolutionary algorithm ex-
tended with heuristics. An empiricial investigation is performed to show
an increase in efficiency on two problem suites , a set of practical problem
instances and a set of hard problem instances from the phase transition.

Keywords: graph colouring, representation, heuristics, merge model.

1 Introduction

The Graph Colouring Problem (gcp) plays an important role in graph theory. It
arises in a number of applications—for example in time tabeling and scheduling,
register allocation, and printed circuit board testing (see [1–3]). gcp deals with
the assigment of colours to the vertices of an undirected graph such that adjacent
vertices are not assigned the same colour. The primary objective is to minimize
the number of colours used. The minimum number of colours necessary to colour
the vertices of a graph is called the chromatic number. Finding it is an NP-hard
problem, but deciding whether a graph is k-colourable or not is NP-complete [4].
Thus one often relies on heuristics to compute a solution or an approximation.

Graph colouring algorithms make use of adjacency checking during colour-
ing, which plays a key role in the overall performance (see [5–7]). The number
of checks depends on the problem representation and the algorithm that uses
it. The Integer Merge Model (imm) introduced here directly addresses the is-
sues mentioned above. Generally, there are two main data structures used to
represent graphs: the adjacency matrix and the adjacency list. In [6] a novel
graph representation for the colouring problem called the Binary Merge Model
(bmm) is introduced. imm is a generalization of bmm, which is a useful and ef-
ficient representation of the gcp ([6, 7]). imm preserves bmm’s beneficial feature
of improving upon efficiency. Moreover, it provides useful information about the

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 123–134, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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graph structure during the colouring process, which enables one to define more
sophisticated colouring algorithms and heuristics with a compact description.
To demonstrate its potential, imm is embedded in the dsatur algorithm [8]—a
standard and effective heuristic gcp solver—and in a meta-heuristic environment
driven by an evolutionary meta-heuristic. On standard problem sets, we compare
the effectiveness and efficiency of these three algorithms, with and without the
use of imm.

2 Representing the Graph k-Colouring Problem

The problem class known as the graph k-colouring problem is defined as follows.
Given a graph G(V, E) which is a structure of nodes and edges, where V =
{v1, ..., vn} is a set of nodes and E = {(vi, vj)|vi ∈ V ∧ vj ∈ V ∧ i �= j} is a set of
edges, the edges define the relation between the nodes (V ×V → E). The graph
k-colouring problem is to colour every node in V with one of k colours such that
no two nodes connected with an edge in E have the same colour. The smallest
such k is called the chromatic number, which will be denoted here by χ.

Graph colouring algorithms make use of adjacency checking during the colour-
ing process, which has a large influence on the performance. Generally, when
assigning a colour to a node, all adjacent or coloured nodes must be scanned
to check for equal colouring, so constraint checks need to be performed. The
number of constraint checks performed lies between two bounds, the current
number of coloured neighbours and |V | − 1. With the imm approach the num-
ber of checks is greater than zero and less than the number of colours used up
to this point. These bounds arise from the model-induced hyper-graph struc-
ture and they guarantee that the algorithms will perform better under the same
search.

2.1 Integer Merge Model

The Integer Merge Model (imm) implicitly uses hyper-nodes and hyper-edges
(see Figure 1). A hyper-node is a set of nodes that have the same colour. A
hyper-edge connects a hyper-node with other nodes, regardless of whether it is
normal or hyper. A hyper-node and a normal-node or hyper-node are connected
by a hyper-edge if and only if they are connected by at least two normal edges.
imm concentrates on the operations between hyper-nodes and normal nodes. We
try to merge the normal nodes with another node, and when the latter is a
hyper-node, a reduction in adjacency checks is possible. These checks can be
performed along hyper-edges instead of normal edges, whereby we can introduce
significant savings. This is because the initial set of normal edges is folded into
hyper-edges. The colouring data is stored in an Integer Merge Table (imt) (see
Figure 2). Every cell (i, j) in this table has non-negative integer values. The
columns refer to the nodes and the rows refer to the colours. A value in cell (i, j)
is greater than zero if and only if node j cannot be assigned a colour i because
of the edges in the original graph 〈V, E〉. The initial imt is the adjacency matrix
of the graph, hence a unique colour is assigned to each of the nodes. If the
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graph is not a complete graph, then it might be possible to reduce the number
of necessary colours. This corresponds to the reduction of rows in the imt. To
reduce the rows we introduce an Integer Merge Operation, which attempts to
merge two rows. When this is possible, the number of colours is decreased by
one. When it is not, the number of colours remains the same. It is achievable
only when two nodes are not connected by a normal edge or a hyper-edge. An
example of both cases is found in Figures 1 and 2.

Definition 1. The Integer Merge Operation ∪ merges an initial row ri into an
arbitrary (initial or merged) row rj if and only if (j, i) = 0 (i.e., the hyper-node
xj is not connected to the node xi) in the imt. If rows ri and rj can be merged
then the result is the union of them.

Formally, let I be the set of initial rows of the imt and R be the set of all
possible |V | size integer-valued rows (vectors). Then an integer merge operation
is defined as

∪ : R × I → R

r′j := rj ∪ ri, r′j , rj ∈ R, ri ∈ I, or by components

r′j(l) := rj(l) + ri(l), l = 1, 2, . . . , |V |
A merge can be associated with an assignment of a colour to a node, because two
nodes are merged if they have the same colour. Hence, we need as many merge
operation as the number of the nodes in a valid colouring of the graph, apart
from the nodes which are coloured initially and then never merged, i.e., a colour
is used only for one node. If k number of rows left in the imt (i.e., the number
of colours used) then the number of integer merge operations was |V |−k, where
k ∈ {χ, . . . , |V |}.

With regard to the time complexity of a merge operation, we can say that
it uses as many integer additions as the size of the operands. In fact, we just
need to increment the value in the row rj , where the corresponding element
in the row ri is non-zero (i.e., has a value of one), that is d(xi) number of
operations. The number of all operations are at most

∑
i d(xi) = 2|E| for a valid

colouring. This occurs when a list based representation of the rows is applied
in an implementation. Using special hardware instructions available on modern
computers, merge operations can be reduced to one computer instruction. For
instance, a merge operation can be performed as one vdot operation on a vector
machine [9].

When solving a graph colouring while using the original graph representation
for checking violations, approximately |V |2 constraint checks are required to get
to a valid colouring and the imm supported scheme uses at most |V |·κ (κ ≈ χ the
number of colors in the result coloring) number of checks, because each node (|V |
items) has to be compared at most the number of existing hyper-nodes/colours,
which is not more than κ and χ if a solution is found. Hence, their quotient is
the improvement of an imm supported colouring, which is proportional to the
|V |/κ ratio.
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2.2 Permutation Integer Merge Model

The result of colouring a graph after two or more integer merge operations
depends on the order in which these operations were performed. Consider the
hexagon in Figure 1(a) and its corresponding imt in Figure 2. Now let the
sequence P1 = 1, 4, 2, 5, 3, 6 be the order in which the rows are considered for
the integer merge operations, i.e., for the colouring.

This sequence of merge operations results in a 4-colouring of the graph de-
picted in Figure 1(c). However, if we use the sequence P2 = 1, 4, 2, 6, 3, 5 then
the result will be only a 3-colouring, as shown in Figure 1(e) with the merges
1∪4, 2∪6 and 3∪4. The defined merge is greedy, i.e., it takes a row and tries to
find the first row from the top of the table that it can merge. The row remains
unaltered if there is no suitable row. After performing the sequence P of merge
operations, we call the resulting imt the merged imt.

Fig. 1. Examples of the result of two different merge orders P1 = 1, 4, 2, 5, 3, 6 and
P2 = 1, 4, 2, 6, 3, 5. The double-lined edges are hyper-edges and double-lined nodes are
hyper-nodes. The P1 order yields a 4-colouring (c), but with the P2 order we get a
3-colouring (e).

Finding a minimal colouring for a graph k-colouring problem using the imt
representation and integer merge operations comes down to finding the sequence
of merge operations that leads to that colouring. This can be represented as
a sequence of candidate reduction steps using the greedy approach described
above. The permutations of this representation form the Permutation Integer
Merge Model (pimm). It is easy to see that these operations and the colouring
are equivalent.

2.3 Extracting Useful Information: Co-structures

The imm can be incorporated into any colouring algorithm that relies on a con-
struction based form of search. The hyper-graph structure introduced can save
considerable computational effort as we have to make only one constraint check
along a hyper-edge instead of checking all the edges it contains. Besides this
favourable property, the model gives incremental insight into the graph structure
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(a) x1 x2 x3 x4 x5 x6

r1 0 1 1 0 0 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r4 0 0 1 0 1 0
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(b) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 1 0 1 0 0 0
r3 1 1 0 1 0 1
r5 0 0 0 1 0 1
r6 1 0 1 0 1 0

(c) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r5 1 0 1 1 0 1

r3 1 1 0 1 0 1
r6 1 0 1 0 1 0

(d) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0

r3 1 1 0 1 0 1
r5 0 0 0 1 0 1

(e) x1 x2 x3 x4 x5 x6

r1 ∪ r4 0 1 2 0 1 1
r2 ∪ r6 2 0 2 0 1 0
r3 ∪ r5 2 1 0 2 0 2

Fig. 2. Integer Merge Tables corresponding to the graphs in Figure 1

with the progress of the merging steps. This information can be used in a bene-
ficial way, e.g., for defining colouring heuristics.

In this section, the co-structures are defined. These structures contain infor-
mation about some useful graph properties obtained during the merging process.
How this information is used precisely is explained in Sections 3 and 4, where
we describe the two algorithms in which we have embedded the Integer Merge
Model.

In practice the initial graphs are uncoloured, the colouring being performed
by colouring the nodes in steps. Here, we deal with the sub-graphs of the original
graphs defined by the colouring steps. The related merge tables contain partial
information about the original one. For example, let the original graph with its
initial imt be defined by Figure 2.3(a) on which the colouring will be performed.
Taking the x1, x4, x2, x6, x3, x5 order of the nodes into account for colouring G,
then P1 = 1, 4, 2, 6, 3, 5 ordered merges of the imt rows will be performed. After
the greedy colouring of the x1, x4, x2 nodes there is a related partial or sub-imt
along with the (sub-)hyper-graph. These are depicted in Figure 2.3(b). The 1st
and the 4th rows are merged together, but the 2nd cannot be merged with the
1 ∪ 4 merged row, thus the 2nd row remains unaltered in the related sub-imt.
The left, top, right and bottom bars are defined around the sub-imt to store the
four co-structures (see Figure 2.3(b)).

The left and top co-structures are associated with the original graph and contain
the sum of the rows and the columns of the current imt, respectively. The sum of
the cell values of a row is equal to the sum of the degree of the nodes associated
with the row (merged or initial), while the sum of the elements of the j-th
column provides the coloured degree of the node xj , i.e., the number of coloured
neighbours.

The right and the bottom co-structures supply information about the hyper-
graph represented by the sub-imt. They are calculated by counting the number
of non-zero values in the rows and columns in the order described. The bottom
bar value is the colour degree, i.e., the number of adjacent colours of a node.
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Fig. 3. The left side shows the partial colouring of the G graph according to the
x1, x4, x2 greedy order and the adjacency matrix of the graph. The right one shows the
partial or sub-imt related to this colouring with its co-structures and sub-imt induced
hyper-graph.

The right bar gives the hyper-degree value of the nodes, which is especially
interesting in case of hyper-nodes. The hyper-degree tells us how many different
normal nodes are connected to the hyper-node being examined. This counts a
node once even though it is connected to the hyper-node in question by more
than one normal edge folded in a hyper-edge.

By extending the imt we are able to describe efficient heuristics in a compact
manner. To demonstrate this we will formulate two effective heuristic using the
Integer Merge Model to get novel colouring algorithms. Two kinds of implemen-
tations of the two heuristic algorithms are considered during the experiments,
when imm is used and when it is not used.

3 The DSATUR Heuristic

This algorithm of Brélaz’s [8] uses a heuristic to dynamically change the ordering
of the nodes and it then applies the greedy method to colour them. It works as
follows. One node with the highest saturation degree (i.e., number of adjacent
colours) is selected from the uncoloured subgraph and is assigned the lowest
indexed colour that still yields a valid colouring (first-order heuristic). If there
exist several such nodes, the algorithm chooses a node with the highest degree
(second-order heuristic). The result can also be a set of nodes. If this is the case,
we choose the first node in a certain order (third-order ’heuristic’). The top and
bottom co-structures are used to define the dsatur heuristic (see Figure 4). Let
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us denote the top co-structure by τt (i.e., the number of coloured neighbours)
and the bottom co-structure by τb (i.e., saturation degree). In our terminology
the highest saturated node is the node which has the largest τb value. Here, τt

is used in the second order heuristic.

Procedure DSATURIMM

1. Find those uncoloured nodes which have the highest saturated value
S = {v|τb(v) = maxu(τb(u)), v, u ∈ V }

2. Choose those nodes from S that have the highest uncoloured-degree
N = arg maxv(d(v) − τt(v))

3. Choose the first row/node from the set N
4. Merge it with the first non-neighbor hyper-node
5. If there exists an uncoloured node then continue with Step 2

Fig. 4. The dsatur heuristic is defined by the imm top (τt) and bottom (τb) co-
structures. Here, d is the degree of a node.

A backtracking algorithm is used to discover a valid colouring [10]. It achieves
either an optimal solution or a near optimal solution when the maximum number
of constraint checks is reached. For comparison purposes, two algorithms were
implemented using this heuristic. The first one, dsaturIMM is based on the
imm structures, while the second one dsaturpure, uses the traditional colouring
scheme, where we only make use of the adjacency matrix.

4 Evolutionary Algorithm to Guide the Models

We have two goals with this meta-heuristic. The first is to find a successful
order of the nodes (see Section 2.2) and the second is to find a successful order
for assigning colours. This approach differs from dsatur, where a greedy color
assignment is used. For the first goal, we must search the permutation search
space of the model described in Section 2.2, which is of size n!. Here, we use
an evolutionary algorithm to search through the space of permutations. The
genotype consists of the permutations of the nodes, i.e., the rows of the imt.
The phenotype is a valid colouring of the graph after using a colour assignment
strategy on the permutation to select the order of the integer merge operations.
The colour assignement strategy is a generalization of the one introduced in [7].
We say that the c-th vector of the sub-imt r′(c) is the most suitable candidate
for merging with rpi if they share the most constraints. The dot product of two
vectors provides the number of shared constraints. Thus, by reverse sorting all
the sub-imt vectors on their dot product with rpi , we can reduce the number
of colours by merging rpi with the most suitable match. Here, the dot product
operates on integer vectors instead of binary ones, thus generalize that.

An intuitive way of measuring the quality of an individual p in the population
is by counting the number of rows remaining in the final bmt. This equals to
the number of colours k(p) used in the colouring of the graph, which needs to be
minimised. When we know the optimal colouring is χ then we may normalise this
fitness function to g(p) = k(p)− χ. This function gives a rather low diversity of
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fitnesses of the individuals in a population because it cannot distinguish between
two individuals that use an equal number of colours. This problem is called the
fitness granularity problem. We modify the fitness function introduced in [7] so
that to use Integer Merge Model structures instead of the appropriate binary
one. This fitness relies on the heuristic that one generally wants to avoid highly
constraint nodes and rows in order to have a higher chance of successful merges at
a later stage, commonly called a succeed-first strategy. It works as follows. After
the final merge the resulting imt defines the colour groups. There are k(p) − χ
over-coloured nodes, i.e., merged rows. Generally, we use the indices of the over-
coloured nodes to calculate the number of nodes that need to be minimised (see
g(p) above). But these nodes are not necessarily responsible for the over-coloured
graph. Therefore, we choose to count the hyper-nodes that violates the least
constraints in the final hyper-graph. To cope better with the fitness granularity
problem we should modify the g(p) according to the constraints of the over-
coloured nodes discussed previously. The final fitness function is then defined as
follows. Let ζ(p) denote the number of constraints, i.e., non-zero elements, in the
rows of the final imt that belong to the over-coloured nodes, i.e., the sum of the
smallest k(p)− χ values of the right co-structure. The fitness function becomes
f(p) = g(p)ζ(p). Here, the cardinality of the problem is known, and used as a
stopping criterium (f(p) = 0) to determine the efficiency of the algorithm. If
χ is unknown, we can use the worst approximation which is χ′ = 0. We must
modify the stop condition to, reaching a time limit or to fitness ≤ 0 due to
under-approximation (χ′ ≤ χ) or over-approximation (χ′ > χ). Alternatively,
the normalisation step can be left out, but this might seriously effect the quality
of the evolutionary algorithm in a negative way.

Procedure EAIMM

1. population = generate initial permutations randomly
2. while stop condition allows

– evaluate each p permutation {
– – merge pj − th uncoloured node into c − th hyper-node by c = maxj

〈
r′

j , rpi

〉
– – calculate f(p) = (k(p) − χ)ζ(p) }
– populationxover = xover(population, probxover)
– populationmut = mutate(populationxover, probmut))
– population = select2−tour(population ∪ populationxover ∪ populationmut)

3. end while

Fig. 5. The EAimm meta-heuristic uses directly the imm structure

We use a generational model with 2-tournament selection and replacement,
where we employ elitism of size one. This setting is used in all experiments.
The initial population is created with 100 random individuals. Two variation
operators are used to provide offsprings. First, the 2-point order-based crossover
(ox2) [11, in Section C3.3.3.1] is applied. Second, the other variation operator is
a simple swap mutation operator, which selects at random two different items in
the permutation and then swaps. The probability of using ox2 is set to 0.3 and
the probability for using the simple swap mutation is set to 0.8. These parameter
settings are taken from the experiments in [7].



Improving Graph Colouring Algorithms and Heuristics 131

5 Experiments

The goal of these experiments are twofold. First, to show the improvement in
efficiency possible when adding the Integer Merge Model to an existing technique.
Second, to show further improvement possible in the evolutionary algorithm by
adding heuristics that are based on the additional bookkeeping in the form of
the co-structures.

5.1 Methods of Comparison

How well an algorithm works depends on its effectiveness and efficiency in solving
a problem instance. The first is measured by determining the ratio of runs where
the optimum is found, this ratio is called the success ratio; it is one if the opti-
mum, i.e., the chromatic number of the graph, is found in all runs. The second
is measured by counting the number of constraint checks an algorithm requires
to find the optimum. A constraint check is defined equally for each algorithm as
checking whether the colouring of two nodes is allowed or not. This measurement
is independent of the hardware used and is known to grow exponentially with
the problem size for the worst-case.

5.2 Definition of the Problem Suites

The first test suite consists of problem instances taken from “The Second dimacs
Challenge” [12] and Michael Trick’s graph colouring repository [12]. These graphs
originate from real world problems, with some additional artificial ones.

The second test suite is generated using the well known graph k-colouring
generator of Culberson [13]. It consists of 3-colourable graphs with 200 nodes.
The edge density of the graphs is varied in a region called the phase transition.
This is where hard to solve problem instances are generally found, which is shown
using the typical easy-hard-easy pattern. The graphs are all equipartite, which
means that in a solution each colour is used approximately as much as any other.
The suite consists of nineteen groups where each group has five instances, one
each instance we perform ten runs and calculate averages over these 50 runs. The
connectivity is changed from 0.010 to 0.100 by steps of 0.005 over the groups. To
characterize better the area of the phase transition, a simplification technique
is used introduced by Cheeseman et al in [14]. This three steps node reduction
removes the 0.010–0.020 groups, and simplify the graphs in the other groups to
get the core of the problems.

5.3 Results

In this section, the results of the three kinds of algorithms are presented with
and without using the Integer Merge Model, i.e., dsatur, ea which uses the
introduced fitness f and colour choosing heuristics and eanoheur which does
not apply these heuristics, it uses a greedy colouring with the fitness g. Each
algorithm was stopped when they reached an optimal solution or 150 000 000
number of constraint checks. DSatur with backtracking is an exact solver, it
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tries to explore the search space systematically by its heuristics. Thus, only one
run is enough to get its result. Because of the stochastic nature of eas, we use
ten independent runs.

We can summarise the results on test suite one found in Table 1 as follows,

– The performance of an algorithm improves significantly if it employs the imm
framework.

– The evolutionary algorithms perform better than dsatur, even after im-
proving the efficiency of the latter with imm.

– Adding heuristics to the evolutionary algorithms is useful to improve upon
the efficiency for harder problem instances.

– All algorithms find a solution for almost every problem within the maximum
number of constraint checks, except for the extremely hard queen8 8 and
r75 5g 8 problems.

Table 1. Number of constraint checks required for test suite one using dsatur and ea
with and without imm (latter is denoted by pure). Ten runs are averaged with different
random seeds for ea-s. Prefix-indices show the success ratios if it is not one.

graph |V | |E| χ dsaturimm dsaturpure eaimm eanoheur
imm eapure eanoheur

pure

fpsol2.i.2 451 8691 30 3059091 40527833 3414 4541 42022 56027
fpsol2.i.3 425 8688 30 2660498 32683629 3174 4988 39151 61015
homer 561 1629 13 2085103 75198957 2455 3672 57586 171641
inithx.i.1 864 18707 54 22305812 345876238 4328 5456 120348 142315
inithx.i.2 645 13979 31 6030391 95778467 2606 3680 84603 112000
inithx.i.3 621 13969 31 5762200 86482594 2480 3804 79458 124508
miles500 128 1170 20 147922 1046162 9066 46276 10366 75445
miles750 128 2113 31 204871 1121864 120051 693403 145459 5103811
miles1000 128 3216 42 244886 1249001 57934 559636 116054 1120068
miles1500 128 5198 73 329361 1500956 5436 14584 7032 19550
mulsol.i.5 186 3973 31 472872 2750261 1221 1370 7916 8905
myciel6 95 755 7 27807 624340 283 331 1499 2146
myciel7 191 2360 8 134956 4810974 901 1350 5602 11163
queen5 5 25 160 5 1665 12408 678 1777 906 2488
queen7 7 49 476 7 1176441 9106599 1092455 6675813 2793682 25332278
queen8 8 64 728 9 − − 0.687482316 0.4102517235 0.2125298157 −
r75 5g 8 75 1407 13 35693383 − 18668080 0.2122257875 0.929609833 0.2129031499

Figure 6 shows the performance measured by success ratio and by average
constraint checks performed of the algorithms on test suite two where 50 in-
dependent runs are used for every setting of the density. Both evolutionary
algorithms show a sharp dip in the success ratio in the phase transition (see
Figure 6), which is accompanied with a rise in the average number of constraint
checks. imm has significant influence on the performance, the improvement lies in
between 6 and 48 times on average (see Figure 6). DSatur provides good results
on the whole suite. Both the low target colour and the sparsity of the graphs
are favourable terms for the heuristics it employs. Furthermore, the order of the
graphs does not imply combinatorial difficulties for the backtracking algorithm.
Beside these facts, the suite is appropriate to get valuable information about the
behaviour of the algorithms. Even if the dsaturs perfom well on the problem
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sets, the ea, using the imm abilities, can outperform the pure version of dsatur
in the critical region. In the phase transition it is 50% better on average. In
practice, increasing the size of the graph leads to better performance of the eas
as opposed to the two exact dsatur algorithms. By employing ea heuristics,
i.e., the fitness function f and the colour choosing strategy, we clearly notice an
improvement in both efficiency and effectiveness over the simple greedy colour-
ing strategy with the simple fitness g. Furthermore, the confidence intervals for
this range are small and non-overlapping. These two approaches give a much
robust algorithm for solving graph k-colouring.
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Fig. 6. Success ratio (dsatur is always one) and average constraint checks to a solution
for the dsatur variants, the eas with and without heuristics (with 95% confidence
intervals)

6 Conclusions

In this paper, we introduced the Integer Merge Model for representing graph
colouring problems. It forms a good basis for developing efficient graph colouring
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algorithms because of its three beneficial properties, a significant reduction in
constraint checks, the availability of useful information for guiding heuristics,
and the compact description possible for algorithms.

We showed how the popular dsatur can be described in terms of the Integer
Merge Model and we empirically investigated how much it can benefit from the
reduction in constraint checks. Similarly, we showed how an evolutionary algo-
rithm can be made more effective by adding heuristics that rely on the Integer
Merge Model. Here we have shown a significant increase in both effectiveness
and effectivity.

Further studies may include incorporating the Integer Merge Model in other
algorithms, including more heuristics. Also, other constraint problems may be
considered.
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Abstract. This paper addresses minimizing makespan by genetic algorithm 
(GA) for scheduling jobs with non-identical sizes on a single batch processing 
machine. We propose two different genetic algorithms based on different 
encoding schemes. The first one is a sequence based GA (SGA) that generates 
random sequences of jobs and applies the batch first fit (BFF) heuristic to group 
the jobs. The second one is a batch based hybrid GA (BHGA) that generates 
random batches of jobs and ensures feasibility through using knowledge of the 
problem. A pairwise swapping heuristic (PSH) based on the problem 
characteristics is hybridized with BHGA that has the ability of steering 
efficiently the search toward the optimal or near optimal schedules. 
Computational results show that BHGA performs considerably well compared 
with a modified lower bound and significantly outperforms the SGA and a 
simulated annealing (SA) approach addressed in literature. In comparison with 
a constructive heuristic named FFLPT, BHGA also shows its superiority. 

1   Introduction 

Batch processing machines (BPM) are encountered in many different environments. 
This research is motivated by burn-in operations in semiconductor manufacturing [1]. 
The purpose of burn-in operations is to test the integrated circuits by subjecting them 
to thermal stress for an extended period. Since the burn-in operation constitutes a 
bottleneck in the final testing operation, efficient scheduling of this operation to 
maximize throughput is of great concern to management. In scheduling problems, 
makespan (Cmax) is equivalent to the completion time of the last job leaving the 
system. The minimum Cmax usually implies a high utilization. The utilization for 
bottleneck station is closely related to throughput rate of the system. Therefore, 
reducing the Cmax should also lead to a higher throughput rate. Te following 
assumptions are considered to our problem:  
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(1) There are n jobs to be processed. The minimum required processing time of job i 
is denoted by ti. 

(2) Each machine has a capacity B and each job i has a size si. The sum of the sizes 
of jobs in a batch must be less than or equal to B. We assume that no job has a 
size exceeding the machine capacity. 

(3) Once processing of a batch is initiated, it cannot be interrupted and other jobs 
cannot be introduced into the machine until processing is completed. The 
processing time of batch j, Tj, is given by the longest processing time of the jobs 
in the batch. 

(4) The objective is minimizing the makespan, Cmax. 

Based on the cited assumptions we can get the following optimization model related 
to our problem: 
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The objective is minimizing the makespan. Constraint set (2) ensures the assignment 
of each job i to only one batch j. Constraint set (3) indicates that sum of the sizes of 
jobs in a batch must be less than or equal to machine capacity. Constraint set (4) gives 
processing time of batch j. Constraint sets (5) and (6) denote the binary restriction of 
the variables Xij and the non-negativity restriction for variables Tj, respectively. The 
last constraint denotes the minimum and the maximum number of required batches to 
group all jobs. 

The arrangement of the paper is as follows. In Section 2, we review works related 
to batch processing models. Section 3, reviews the batch first fit heuristic. In this 
section we also develop a heuristic approach for the considered problem. GAs 
implementation and parameters setting are described in Section 4. In Section 5, the 
performance of proposed GAs is evaluated. We conclude the paper with a summary in 
Section 6.  

2   Literature Review 

Batch machine scheduling problems, where the batch processing time is given by the 
processing time of the longest job in the batch have been addressed extensively. 

(2) 

(1) 

(3) 

(4) 

(5) 

(6) 

(7) 
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Given different size for jobs, Uzsoy [1] gave complexity results for the minimizing 
makespan (Cmax) and total completion time (ΣCi) criteria and provided some heuristics 
and a branch and bound algorithm. Dupont and Jolai [2] proposed heuristics to 
minimize Cmax. In another research Jolai and Dupont [3] considered ΣCi criterion for 
the same problem. A branch-and-bound procedure for minimizing the Cmax was also 
developed by Dupont and Dhaenens-Flipo [4]. Melouk, et al., [5] developed a 
simulated annealing (SA) approach for minimizing Cmax to schedule a single BPM 
with different job sizes. We use their proposed SA as a base algorithm in our 
computational experiments. Shuguang et al. [6] recently presented an approximation 
algorithm with worst-case ratio 2+ε, for minimizing the makespan. 

3   Heuristics 

Uzsoy [1] constructed a set of heuristics based on the First-Fit procedure developed 
for the bin-packing problem. The batch first fit (BFF) heuristic adapted to the 
scheduling problem is as follows: 

Step 1. Arrange the jobs in some arbitrary order. 
Step 2. Select the job at the head of the list and place it in the first batch with enough 

space to accommodate it. If it fits in no existing batch, create a new batch. 
Repeat step 2 until all jobs have been assigned to a batch. 

Step 3. Sequence the batches on the machine in any arbitrary order. 

It has been shown that if in the BFF the sorting of jobs is in LPT order at the first step, 
then the algorithm will be superior in both the average and the worst-case 
performance comparing to non-LPT based BFF algorithms [1]. In this case it is called 
FFLPT algorithm. 

Based on our encoding scheme used for the BHGA, we develop a heuristic procedure 
named random batches procedure (RBP), which gives a feasible batching scheme by 
considering both size and processing time of jobs. The heuristic is as follows: 

Step1. Assign all jobs to L batches, randomly without considering the capacity restriction. 
If the derived batching scheme is feasible, stop. Otherwise go to step 2. 

Step2. Choose a batch with capacity violation and the longest batch processing time. Sel-
ect the job with the longest processing time in it. Put the selected job in the first 
feasible batch having the batch processing time longer than processing time of the 
selected job with the smallest residual capacity, then go to step 3. If there is no 
such a feasible batch with longer processing time, put the job in the feasible batch 
with longest processing time and go to step 3. If the selected job fits in no existing 
batches, create a new batch and assign the job to it. 

Step3. Repeat step 2 until getting a feasible batching scheme. 

The above procedure tries to group jobs with longer processing time in the same 
batches and simultaneously minimizing the residual capacity of batches.  

Uzsoy [1] proposed a lower bound on the optimal makespan by relaxing the 
problem to allow jobs to be split and processed in different batches. When there are 
some jobs that cannot be grouped with any other jobs in a same batch, we modify the 
lower bound as follows: 
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1) Put the jobs satisfying following relation in the set J, and remove them from the 
set of whole jobs. 

{ }
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2) For the reduced problem, construct an instance of Cmax (
LB
maxC ) with unit job sizes 

where each job m is replaced by sm jobs of unit size and processing time tm. This 
can be solved by ordering jobs in decreasing order of processing times, 
successively grouping the B jobs with longest processing times into the same 
batch. 

3) The modified lower bound, MLB
maxC , can be obtained as: LB
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Ji
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To show the computation of the lower bound solution, we use a test problem whose 
data are shown in Table 1. 
 

;10=B  

Table 1. Data for the test problem 

Job i 1 2 3 4 5 6 7 
ti 10 3 5 2 6 3 1 
si 7 5 3 9 6 4 8 

 
 
1) Since the minimum size is equal to 3, then jobs 4 and 7 cannot be grouped by any 

other job in a same batch.  So we set: 
}7,4{=J , {7}2batch  {4},1batch == . 

2) For the remain jobs, sorting the jobs in decreasing order of their processing times 
and successively grouping the jobs which are allowed to be split across the 
batches, we get the following batching scheme: 

{2,6};5batch   {5,3,2},4batch   {1,5},3batch ===  

;3}3,3{max   6,max{6,5,3}10max{10,6} ====== 543 TT   ,T  

3) The lower bound solution is: 22361012C =++++=MLB
max

. 

4   Proposed GAs and Their Implementation 

Genetic algorithms are powerful and broadly applicable stochastic search and 
optimization techniques based on principles of evolution theory. In the past few years, 
genetic algorithms have received considerable attention for solving difficult 
combinatorial optimization problems. 

This paper proposes two different GAs based on different chromosome 
representations for scheduling a single batch processing machine. The first one is 
SGA that searches the solutions space via generating random sequences of jobs to 
obtain sequences that yield the better Cmax. For each generated sequence, BFF 
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heuristic is applied to batch the jobs in an order similar to the corresponding 
sequence. In the second GA entitled BHGA, searching the solutions space is done by 
generating random feasible batches of jobs. A pairwise swapping heuristic is used in 
BHGA to improve its performance. The following steps describe in detail how the 
GAs are implemented in this research. 

4.1   Coding 

In our coding schemes, each gene corresponds to one of n jobs. In SGA, each 
chromosome is related to a sequence of jobs. To generate the chromosomes we have 
used random key representation of Bean [7], which represents order of jobs with a 
sequence of uniformly distributed random numbers. A simple example of using 
random key representation for a batch-scheduling problem can be found in Wang and 
Uzsoy [8]. In BHGA, a solution for the problem of assigning jobs to batches is an 
array whose length is equal to the number of jobs to be scheduled. Each gene 
represents the batch to which the job is assigned. Figures 1 and 2 show the 
chromosomes related to GA heuristics for a batch-scheduling problem with 5 jobs. 

 

 

4.2. Initial Population 

The initial population for SGA is constructed randomly, where the initial population 
for BHGA is generated by RBP. The performance of RBP is directly dependent on the 
number of initial batches. This implies that starting RBP with large number of initial 
batches would be undesirable. However, starting RBP with small number of initial 
batches to form all chromosomes of BHGA’s initial population may cause to trap in 
locality. To come up with poor quality of initial seeds and to avoid trapping in 
locality, we use a truncated geometric distribution to generate randomly the number 
of initial batches used in RBP to form a feasible initial population of chromosomes. 
Using a geometric distribution to simulate the number of initial batches ensures that 
the probability of starting RBP with large number of batches would be small, against 
the high probability for starting with less number of batches. The following relation 
gives the random number of initial batches to start RBP for constructing the 
chromosomes of initial population of BHGA. 
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l

,,3,2 :1
)1ln(

)))1(1(1ln( 1

L∈+
−
−−−=

−
 . (9) 

where L is a random number of initial batches for starting RBP, distributed by a 
truncated geometric distribution, R is a uniformly distributed variable belonging to 
[0,1], p is the probability of success, and l, is the minimum number of required 

1 4 2 3 4 

J1 J2 J3 J4 J5 

Fig. 1. Chromosome representation for SGA Fig. 2. Chromosome representation for BHGA 

0.461 0.106 0.281 0.514 0.515 

J3 J5 J4 J2 J1 



140 A.H. Kashan, B. Karimi, and F. Jolai 

batches, =
=

Bsl
n

i
i

1

. As stated before, scheduling jobs with RBP, starting from one 

batch is almost equivalent to scheduling jobs with FFLPT heuristic; so for fair 
comparison between SGA and BHGA, we start RBP with more than one batch.  

The above approach for generating the initial population in BHGA has some 
advantages, since it uses efficiently the knowledge of the problem to group the jobs 
with longer processing times in the same batches as long as possible. However this is 
not the case with SGA through using the random key representation. Also one can 
adjust the quality of initial population by choosing a proper value of p. Setting a high 
value for p, seems to be effective on accelerating the convergence rate trough a good 
quality initial seeds but may cause trapping in local optimum. Low value of p causes 
to less-accelerate converging due to the relatively low quality of initial population. So 
a tuned value of p would be drastic to exploit advantages of such an intelligent 
mechanism of generating initial population. 

4.3   Selection 

For selecting chromosomes, the roulette wheel technique is followed. The fitness of 
the chromosome is the makespan value. The probability of selecting a certain 
chromosome is proportional to its fitness. 

4.4   Crossover 

A parameterized uniform crossover of Bean [7] is used in which, a bias coin is used to 
determine which one of the two selected parents should pass its gene. Using 
parameterized uniform crossover ensures the feasibility of the generated offspring to 
be still a sequence and allows us to bias the search more strongly toward components 
of better solutions and accelerate convergence. A simple example of using 
parameterized uniform crossover for a batch-scheduling problem can be found in 
Wang and Uzsoy [8]. It should be noted that in BHGA we don’t use random key 
representation because in this case the chromosomes are not represented as sequences. 
For a fair comparison between BHGA and SGA, we extend the use of parameterized 
uniform crossover to BHGA. Our computational results report the good performance 
of applying parameterized uniform crossover on BHGA. In crossover stage of BHGA 
it may happen to lose some of batches in the generated offspring. In this case we 
rename the batches of the offspring in consecutive order. For any infeasible generated 
offspring, the RBP is applied to ensure the feasibility. In this case each generated 
offspring indicates an initial batching plan, which is infeasible. To ensure the 
feasibility we apply steps 2 and 3 of RBP to get a feasible batching scheme. 

4.5   Mutation 

The swapping mutation is used as mutation operator for both SGA and BHGA. It 
selects two random genes of a selected chromosome and swaps them with each other. 
The feasibility of the mutated schedule is kept through using steps 2 and 3 of RBP. 
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4.6   Pairwise Swapping Heuristic (PSH) 

For BHGA, we developed an iterative pairwise swapping heuristic (PSH), which 
reduces Cmax value of a given schedule by consecutively swapping jobs between 
batches as much as possible. The PSH adapted to BHGA is as follows:  

For any selected schedule while there is not any improvement in Cmax do: 
 

Step1. List the batches that have only one job with maximum processing time. If the 
list is empty, consider the current schedule as PSH offspring and stop. 
Otherwise, consider the first batch in the list (call it a) and find a batch with 
batch processing time equal or longer than the processing time of the 
considered batch (call it b). Swap the job with longest processing time in a, 
( aj ), with a job in b, ( bj ), which has the processing time less than processing 

time of job aj , with respect to capacity violation constraint. If there is not any 

batch b, or there is not any job bj , consider the current schedule as PSH 

offspring corresponding to the batch a. Repeat step 1 for all batches in the list. 
Step2. Choose a schedule with better Cmax among the schedules of step 1 and return to 

step 1.  
 

In each generation, for all problem categories (after deleting repeated chromosomes) 
the PSH is applied on the best chromosomes selected based on a defined probability, 
i.e. PPSH.  

In each generation of both SGA and BHGA, the new population is formed by 
offspring generated by GA operators. The rest of the population is filled with the best 
chromosomes of the former generation. 

4.7   Parameters Setting 

The performance of a GA is generally sensitive to the setting of the parameters that 
influence the search behavior and the quality of convergence. It is highly desirable to 
set these parameters to levels that produce high quality solutions. 

For both SGA and BHGA, we consider the population size equal to n and the 
number of simulated generations equal to 200. Also both GAs are stopped if there is 
no improvement in the best solution obtained in last 100 generations. Worth to 
mention that to avoid useless computations, we set an extra stopping criterion, which 
is getting to the modified lower bound solution. For BHGA, based on our primary 
experiments we found 0.2 to be appropriate value for the truncated geometric 
distribution parameter (probability of success), for all problem instances. 

For tuning crossover rate, mutation rate and head probability, different values are 
considered; 0.5 and 0.7 for crossover rate, 0.05, 0.1 and 0.15 for mutation rate and 0.7 
and 0.9 for head probability. Table 2 shows the results of tuning. Moreover in BHGA 
the value for 

PSHP  is considered equal to 0.25 for all problem categories. We found 

this value by our primary experiments.  
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Table 2. Parameter setting for GA’s operators 

Parameters SMOGA BHMOGA 
Crossover rate 0.70 0.50 

Mutation rate 0.15 0.15 

Head probability 0.90 0.90 

PPSH - 0.25 

Truncated geometric parameter  - 0.20 

5   Experimentations and Results 

For testing effectiveness of proposed GAs, randomly test problem instances are 
generated in a manner similar to Melouk et al. [5]. For covering various types of 
problems, three factors are identified: number of jobs, variation in job processing 
times, and variation in job sizes. In general 6 categories of problems are generated by 
combining three levels of job sizes (small, large and combination of small and large 
(mixed)) and two levels of processing times. Processing times and job sizes are 
generated from discrete uniform distribution. The factors, their levels and ranges, are 
shown in Table 3. For example a problem category with 10 jobs, processing times 
generated from [1, 20] and job sizes generated from [4, 8] is shown by J1t2s3. The 
machine capacity is assumed to be 10 in all instances.  

All the algorithms, SGA, BHGA, SA, FFLPT and the modified lower bound, are 
coded in MATLAB 6.5.1 and all test problem instances are solved 15 times by GAs 
and SA on a Pentium III, 800MGz computer with 128 MB RAM. 

Table 4 represents the results for 10 jobs instances. Columns 2 and 4, report the best 
and worst Cmax among the 15 runs of BHGA. Column 3 and 5 report the average Cmax 
and the standard deviation among the solutions gained by 15 runs of each problem 
category by BHGA, respectively. Column 6 reports the average time taken by BHGA. 
These values are reported in columns 7, 8, 9, 10 and 11 for the SGA and 12, 13, 14, 15 
and 16 for the SA, respectively. Column 17 reports the performance of the FFLPT. 
Tables 5, 6 and 7 can be interpreted in a same manner. For each algorithm, the best case, 
average and the worst case performance are computed by the following relation: 

{ MLBMLB
max / maxmax C]C-[C }*100 . (10) 

Table 3. Factors and levels 

Factors  Levels 
|J | 10, 20, 50 and 100 jobs (J1-J4) 

t1: Discrete uniform [1, 10] 
ti 

t2: Discrete uniform [1, 20] 
s1: Combination of small and large jobs (Discrete uniform [1, 10]) 

s2: Small jobs (Discrete uniform [2, 4]) si 

s3: Large jobs (Discrete uniform [4,8]) 
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where the term Cmax denotes the performance for each algorithm. Tables 8, 9, 10 and 
11 compare BHGA versus SGA, SA and FFLPT in term of Cmax value differences for 
the problems with 10, 20, 50 and 100 jobs, respectively. The differences are given by: 

{[Cmax(A)-Cmax(BHGA)]/max{Cmax(A), Cmax(BHGA)}}*100 . (11) 

where, Cmax(A) denotes the Cmax for the  SGA or SA or FFLPT comparators. The 
positive differences imply that BHGA works better than the others.  

Computational analysis shows that in all categories of test problem instances, 
BHGA performs significantly better than SGA and SA, especially for the problems 
with large number of jobs. Concerning to increasing trend in the reported objective 
value differences, it is promising for BHGA to outperform SGA and SA as the 
problem size increase.  

The resulting tables show that, for all problems with small jobs (J.t.s2), BHGA 
achieved the optimal makespan. As was mentioned before, for these problems, jobs 
swapping can be more easily handled by the PSH, so converging to the optimal 
makespan may be best achieved through the hybridizing PSH with BHGA. 
However for problems with small jobs both SGA and SA report the worst 
performance. For the problems with mixed size jobs (J.t.s1) results show the better 
performance for BHGA compared to SGA and SA. In this case, although the 
objective value differences are not as large as the case of problems with small jobs, 
they are still meaningfully large, especially for larger problems. In this case 
because of the diversity in the job sizes, effective use of the batch capacity in 
assigning the jobs to batches is an important factor that is satisfied by RBP for the 
BHGA. The smallest objective value difference exists for the problems with large 
size jobs (J.t.s3). It is expected that for these problems, 40% of individual jobs lie 
in exactly one batch (the jobs with sizes 7 and 8) and yet the 60% of jobs need to 
be assigned efficiently to batches to decrease the makespan. This caused to 
reduction in the objective value differences among the BHGA and both SGA and 
SA. The increment in the difference values is more likely as the problem size 
increases. As it is clear from the results, by reporting smaller standard deviations, 
BHGA is also more reliable than both SGA and SA.  

Compared to FFLPT, results show that BHGA performs better. However in this 
case the differences are not as large as the case with SGA and SA.  

Comparing the required running time for the algorithms, results show that in most 
of test problem instances the average time needed for BHGA is less than SGA and 
SA, especially for problems with small and large jobs. This can be related to the high 
rate of convergence in BHGA for the relatively good quality of initial population and 
the effective performance of PSH. In BHGA using RBP to get feasibility for a 
schedule, generally it takes less time than batching a sequence of jobs using BFF 
heuristic in SGA. This means superiority for BHGA compared to SGA. In SGA for 
each generated offspring, BFF is applied to assign all n jobs to batches, while in 
BHGA when an offspring with m batches is formed, to make it feasible, n-m jobs in 
worst case must be reassigned to batches by RBP; this is because at least m jobs do 
not need to be reassigned in batches.  
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6   Conclusions and Future Research Directions 

In this paper we considered the problem of minimizing makespan on a single batch 
processing machine with non-identical job sizes. The processing time of a batch is 
given by the longest processing time of the jobs in the batch. We proposed two 
different genetic algorithms based on different chromosome representations. Our 
computational results show that our second GA entitled BHGA outperforms the first 
GA named SGA and also outperforms the simulated annealing approach taken from 
the literature as a base algorithm, especially for large-scale problems. In most cases 
this algorithm has the ability to find optimal or near optimal solution(s) in reasonable 
CPU times. Also its superiority compared to the constructive FFLPT algorithm and its 
very good performance comparing to a modified lower bound was proved. Some 
characteristics such as using a robust mechanism for generating initial population and 
using an efficient pairwise swapping heuristic, which has the ability of steering 
quickly the search toward the optimal solution, cause BHGA to dominate the others.  

For future research, the extension of our approach could include due date related 
performances and also consider dynamic job arrivals and incompatible families. 

References 

1. Uzsoy, R.: A single batch processing machine with non-identical job sizes. International 
Journal of Production Research. 32 (1994) 1615-1635 

2. Dupont, L., Jolai Ghazvini, F., Minimizing makespan on a single batch processing 
machine with non identical job sizes. European journal of Automation Systems, 1998, 32, 
431-440. 

3. Jolai Ghazvini, F., Dupont, L.: Minimizing mean flow time on a single batch processing 
machine with non- identical job size. International Journal of Production Economics. 55 
(1998) 273-280. 

4. Dupont, L., Dhaenens-Flipo, C.: Minimizing the makespan on a batch machine with non-
identical job sizes: an exact procedure. Computers & Operations Research. 29 (2002) 
807-819. 

5. Melouk, S., Damodaran, P., Chang, P.Y.: Minimizing makespan for single machine batch 
processing with non-identical job sizes using simulated annealing. International Journal of 
Production Economics. 87 (2004) 141-147. 

6. Shuguang, L., Guojun, L., Xiaoli, W., Qiming, L.: Minimizing makespan on a single 
batching machine with release times and non-identical job sizes. Operations Research 
Letter. 33 (2005) 157-164. 

7. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization. ORSA 
Journal of Computing. 6 (1994) 154-160. 

8. Wang, C., Uzsoy, R.: A genetic algorithm to minimize maximum lateness on a batch 
processing machine. Computers & Operations Research. 29 (2002) 1621-1640. 



A Relation-Algebraic View on Evolutionary
Algorithms for Some Graph Problems

Britta Kehden and Frank Neumann

Inst. für Informatik und Prakt. Mathematik,
Christian-Albrechts-Univ. zu Kiel, 24098 Kiel, Germany

{bk, fne}@informatik.uni-kiel.de

Abstract. We take a relation-algebraic view on the formulation of evo-
lutionary algorithms in discrete search spaces. First, we show how indi-
viduals and populations can be represented as relations and formulate
some standard mutation and crossover operators for this representation
using relation-algebra. Evaluating a population with respect to their con-
straints seems to be the most costly step in one generation for many
important problems. We show that the evaluation process for a given
population can be sped up by using relation-algebraic expressions in the
process. This is done by examining the evaluation of possible solutions
for three of the best-known NP-hard combinatorial optimization prob-
lems on graphs, namely the vertex cover problem, the computation of
maximum cliques, and the determination of a maximum independent
set. Extending the evaluation process for a given population to the eval-
uation of the whole search space we get exact methods for the considered
problems, which allow to evaluate the quality of solutions obtained by
evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) have become quite popular in solving real-world
problems as well as solving problems from combinatorial optimization. Repre-
senting possible solutions for a given problem has been widely discussed. There
are for example different representations for the well-known traveling salesman
problem (see e.g. Michalewicz (2004)) or NP-hard spanning tree problems ((e.g.
Raidl and Julstrom (2003) and Soak, Corne, and Ahn (2004)). Each of these
representations leads to a different neighborhood of a particular solution and
variation operators such as mutation and crossover have to be adjusted to the
considered representation.

In this paper we focus on a different issue of representation. We study the
question whether representations using relations can be useful. The issue of hy-
bridization has become quite popular in the area of evolutionary computation.
Here one combines evolutionary algorithms with other approaches in order to
get better results. We think that it may be useful to combine evolutionary al-
gorithms with the techniques used in the community of relational methods, and
focus on how to formulate the different modules of an EA using relational alge-
bra. A first step into this direction has been made by Kehden, Neumann, and
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Berghammer (2005) who have given a relational implementation of a (1+λ) EA.
It may be also worth examining which parts of the search process can be car-
ried out using relational algebraic expressions. We think it is worth building a
bridge between relational algebra and evolutionary computation. In particular
it may be useful to consider relation-algebraic expressions in some parts of an
evolutionary algorithm, which can speed up some computations.

We focus on evolutionary algorithms for the search space {0, 1}n and ex-
amine how the most important modules of an evolutionary algorithm can be
implemented on the basis of relational operations. Relational algebra has been
widely used in computer science. Especially in the case of NP-hard combinato-
rial optimization problems on graphs, a lot of algorithms have been developed.
Relational algebra has a small, but efficiently to implement, set of operations.
On the other hand it allows a formal development of algorithms and expressions
starting usually with a predicate logic description of the problem.

Because of the small set of operations used in relational algebra that can
be implemented efficiently we get a common environment for evolutionary algo-
rithms working in the mentioned discrete search space. In addition it has been
shown that relations can be implemented efficiently using Ordered Binary Deci-
sion Diagrams (OBDDs). In particular in the case that a considered relation has
a special structure we can hope to get a much more compact representation of
the relation than the standard representation as a matrix. Due to the properties
of OBDDs the operations used in relational algebra can be implemented effi-
ciently. Software systems for relational algebra using this kind of representation
are for example RelView (e.g. Berghammer and Neumann (2005)) or Croco-
Pat (Beyer, Noack, and Lewerentz (2005)). Both systems are able to carry out
relation-algebraic expressions and programs based on OBDD operations.

We represent a population which is a set of solutions as one single relation and
evaluate this population using relational algebra. It turns out that this approach
can be implemented in a way that mainly relies on the relation-algebraic formu-
lation of the specific modules. Considering the evaluation of a given population
we show that this process can be made more efficient using relational algebra.
We consider three well-known NP-hard combinatorial optimization problems,
namely minimum vertex covers, maximum cliques, and maximum independent
sets, and show how the whole population can be evaluated with respect to the
corresponding constraints of the given problem using relational algebra. It turns
out that using this approach can reduce the runtime from Θ(n3) to O(n2.376)
for a population of size n compared with a standard approach.

In the special case where we evaluate all search points of the given search
space we are dealing with an exact method for the considered problem. We show
how the evaluation process for a population can be turned into a process for
evaluating the whole search space and therefore computing an exact solution.
Due to the compact representation of relations by OBDDs this approach is often
quite successful. Comparing the solutions obtained by an evolutionary approach
with the optimal solution we are able to evaluate the quality of the solutions
obtained by evolutionary algorithms.
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In Section 2 we show how populations are represented as relations and re-
call preliminaries of relational algebra. In Section 3 we consider the evaluation
process for three important graph problems based on relational algebra, and for-
mulate important modules of an evolutionary algorithm using relational algebra
in Section 4. The evaluation processes of populations for the given problems are
extended to get exact methods in Section 5. Based on this, we investigate in
Section 6 the quality of solutions obtained by a standard evolutionary approach
for the vertex cover problem with respect to the optimal solutions using some
experiments. Finally, we finish with conclusions.

2 Representing Populations as Relations

We consider evolutionary algorithms working in the search space {0, 1}n, and
possible solutions are therefore bitstrings of length n. For simplicity we also
assume that a population has n individuals although our ideas may be adapted
to populations of different sizes. We want to represent the whole population as
a relation P where each individual of P is stored in one single column. As we
want to show how to use relational algebra in an evolutionary algorithm we
have to start with some basic definitions. Relational algebra has a surprisingly
small set of operations that can be implemented efficiently. In the following we
give the basic notations that we will use throughout this paper. In addition we
give upper bounds on the runtime needed to execute the different operations.
For a more detailed description of relational algebra we refer to Schmidt and
Ströhlein (1993).

We write R : X ↔ Y if R is a relation with domain X and range Y , i.e. a
subset of X × Y . In the case of finite carrier sets, we may consider a relation
as a Boolean matrix. Since this Boolean matrix interpretation is well suited for
many purposes, we often use matrix terminology and matrix notation in the fol-
lowing. Especially, we speak of the rows, columns and entries of R and write Rxy

instead of (x, y) ∈ R. The basic operations on relations are R� (transposition),
R (negation), R∪S (union), R∩S (intersection), RS (composition), the special
relations O (empty relation), L (universal relation), and I (identity relation). A
relation v : X ↔ 1 is called vector, where 1 = {⊥} is a specific singleton set.
We omit in such cases the second subscript, i.e. write vi instead of vi⊥. Such
a vector can be considered as a Boolean matrix with exactly one column and
describes the subset {x ∈ X : vx} of X . Note, that one search point of the
considered search space can be represented as a vector of length n. A set of k
subsets of X can be represented as a relation P : X ↔ [1..k] with k columns.
For i ∈ [1..k] let P (i) be the i-th column of P . More formally, every column P (i)

is a vector of the type X ↔ 1 with P
(i)
x ⇐⇒ Pxi. We use relational expressions

to evaluate populations, i.e. to decide which individuals fulfill certain properties
by computing vectors of the type [1..k] ↔ 1.

We assume that we are always working with populations that have exactly
n individuals which implies k = n. Therefore, the relation P representing this
population has exactly n rows and n columns. Under the assumption that we
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work with n × n relations, the operations transposition, negation, union and
intersection can be implemented in time O(n2). The standard implementation
for the composition needs time Θ(n3). Using the algorithm proposed by Cop-
persmith and Winograd (1990) for the multiplication of two n× n matrices we
can reduce the runtime for the composition to O(n2.376). In the case that we
work with random relations R and S, where each entry is set with probability p
to 1 and 0 otherwise, the runtime for the composition can be reduced to almost
O(n2 log n) as shown by Schnorr and Subramanian (1998). This also holds if one
of the relations is arbitrary but fixed and the entries of the other one are chosen
with probability p.

Another advantage of the relation-algebraic approach is that relations can
be represented efficiently using Ordered Binary Decision Diagrams (OBDDs) as
shown by Berghammer, Leoniuk, and Milanese (2002). OBDDs are implicit rep-
resentations for boolean functions (see e.g. Wegener (2000)). In the case that the
relations have a regular structure we often get a compact representation of rela-
tions. The mentioned operations for relations can be carried out efficiently using
standard operations on OBDDs. For practical applications this leads sometimes
to faster algorithms for a given task. For example Beyer, Noack, and Lewer-
entz (2005) have shown for practical instances that the transitive closure of a
given graph can be computed much faster and with significantly less memory
than using standard approaches.

3 Testing Properties of Solutions for Some Graph
Problems

Assume that we have a relation P that represents a population such that each
column is identified with an individual. One important issue is to test whether
the individuals of the population fulfill given constraints which means that they
are feasible solutions. Often this is the most costly step in one generation of an
evolutionary algorithm. In Section 4 we will show that all the other important
modules which we consider like crossover, mutation, and selection methods of
an evolutionary algorithm can be carried out in time O(n2) for one generation.

Often even the test whether an individual fulfills the constraints of a given
problem needs time Ω(n2). In the case that our population consists of n indi-
viduals we get a runtime of Ω(n3) for evaluating the whole population using a
standard approach. In the following we show how the evaluation of a popula-
tion can be done for some well-known graph problems using relation-algebraic
expressions.

Given a graph G = (V, E) with n vertices and m edges represented as an
adjacency relation R we want to test each individual to fulfill a given property.
We concentrate on the constraints for some of the best-known combinatorial
optimization problems for graphs, namely minimum vertex covers, maximum
cliques, and maximum independent sets. A vertex cover of a given graph is a
set of vertices V ′ ⊆ V such that e ∩ V ′ �= ∅ holds for each e ∈ E. For a clique
C ⊆ V the property that Ruv for all u, v ∈ C with u �= v has to be fulfilled and
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in an independent set I ⊆ V , Ruv has to hold for all u, v ∈ I with u �= v. It
is well known that computing a vertex cover of minimum cardinality or cliques
and independent sets of maximal cadinaliy are NP-hard optimization problems
(see e.g. Garey and Johnson (1979)).

Consider one individual x of the population. If we want to test whether this
individual fulfills one of the stated properties we need a runtime of Θ(n2) to do
this in a standard approach. In the case of the vertex cover problem we have
to consider whether each edge contains a vertex of V ′ which needs time Θ(n2)
for graphs with m = Θ(n2). In the case of cliques we have to consider whether
{u, v} ∈ E holds for each pair of two distinct vertices u, v ∈ C. If |C| = Θ(n),
Θ(n2) edges have to be considered. Similar for the independent set problem and
|I| = Θ(n) we have to test for Θ(n2) pairs of vertices if there is no edge between
these vertices. Working with a population of size Θ(n) this means that we need
time Θ(n3) for evaluating each of these properties.

We want to show that the runtime for evaluating a population that is repre-
sented as a relation can be substantially smaller using relation-algebraic expres-
sions. Note, that the size of the solutions, which means the number of ones in
the associated column, can be determined for the whole population P in time
O(n2) by examining each entry of the relation at most once. Therefore, the most
costly part of the evaluation process for the three mentioned problems seems to
be the test whether the given constraints are fulfilled.

Given the two relations R and P we can compute a vector that marks all
solutions of the population that are vertex covers.

P (i) is a vertex cover of R ⇐⇒ ∀u, v : Ruv → (P (i)
u ∨ P

(i)
v )

⇐⇒ ¬∃u, v : Ruv ∧ Pui ∧ P vi

⇐⇒ ¬∃u : (RP )ui ∧ Pui

⇐⇒ ¬∃u : (RP ∩ P )ui

⇐⇒ ¬∃u : L⊥u ∧ (RP ∩ P )ui

⇐⇒ ¬(L(RP ∩ P ))⊥i

⇐⇒ L(RP ∩ P )
�
i .

To obtain the expression for the case of independent sets we can use the fact
that P (i) is an independent set iff P

(i)
is a vertex cover.

P (i) is an independent set of R ⇐⇒ P
(i)

is a vertex cover of R

⇐⇒ L(RP ∩ P )
�
i

Since a set of vertices is a clique of G if and only if it is an independent set
of the complement graph with adjacency relation R ∩ I, we can conclude

P (i) is a clique of R ⇐⇒ P (i) is an independent set of R ∩ I

⇐⇒ L((I ∩R)P ∩ P )
�
i

⇐⇒ L((I ∪R)P ∩ P )
�
i
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Considering the different expressions, the most costly operation that has to
be performed is the composition of two n×n relations. Therefore the evaluation
process for a given population P and a relation R can be implemented in time
O(n2.376) by adapting the algorithm of Coppersmith and Winograd (1990) for
the multiplication of two n×n matrices to relations, which beats the lower bound
of Ω(n3) for the standard implementation. Note, that also larger populations can
be handled saving a factor of n0.624 compared with the standard implementation
by partitioning the large population into different subpopulations of size n and
executing relation-algebraic expressions for these subpopulations.

4 Relation-Algebraic Formulation of Important Modules

Variation operators are important to construct new solutions for a given prob-
lem. We assume that the current population is represented by a relation P and
present a relation-algebraic formulation for some well-known variation-operators.
In addition we formulate an important selection method based on relational al-
gebra. It turns out that the runtimes for our general framework are of the same
magnitude as in a standard approach.

4.1 Mutation

An evolutionary algorithm that uses only mutation as variation operator usually
flips each bit of each individual with a certain probability p. The approach for
our population represented as a relation is straightforward and can be imple-
mented in time O(n2) as we have to consider each entry of P at most once. To
integrate the mutation operator into the general framework we assume that we
have constructed a relation M that gives the mask which entries are flipped in
the next step. In this case each entry of M is set to 1 with probability p. Then we
can construct the relation C for the children of P using the symmetric difference
of P and M . Hence, we can compute the n children of P by

C = (P ∩M) ∪ (P ∩M).

4.2 Crossover

A crossover operator for the current population P takes two individuals of P to
produce one child. To create the population of children C by this process, we
assume that we have in addition created a relation P ′ by permuting the columns
of P . Then we can decide which entry to use for the relation C by using a
mask M .

C = (M ∩ P ) ∪ (M ∩ P ′)

To implement different crossover operators we have to use different masks in
this expression.
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In the case of uniform crossover each entry is chosen from P or P ′ with
probability 1/2. Hence, we can use the mask M where each entry is set to 1 with
probability 1/2 and 0 otherwise.

In the case of 1-point crossover, we choose for each column j a position ki

such that Mij holds for 1 ≤ i ≤ ki and M ij otherwise. In a similar way the
masks for the other crossover operators can be constructed.

Often one does not want to apply crossover to each pair of individuals given by
P and P ′. Normally each pair of individuals is used for crossover with a certain
probability pc. To specify these pairs of individuals, we construct a vector m of
length n where each entry is set to 1 with probability pc. Then we obtain a new
mask

M ′ = M ∩ (mL)�,

with L : 1 ↔ [1..n] which can be used to compute the relation C. In a simi-
lar way we can mutate individuals of P only with a certain probability pm by
constructing a vector m where each entry is set to 1 with probability pm.

The construction of the masks for crossover or mutation can be carried out
in time O(n2) and each operation for the computation of C needs time O(n2).
Hence, each of the mentioned crossover or mutation operators can be imple-
mented in time O(n2) using relational algebra.

4.3 Selection

We focus on one of the most important selection methods used in evolutionary
computation, namely tournament selection, and assume that we have a parent
population P and a child population C both of size n. To establish n tournaments
of size 2 we use a random bijective mapping that assigns each individual of P to
an individual of C. This can be done by permuting the columns of C randomly.
Due to the evaluation process we assume that we have a decision vector d that
tells us to take the individual of P or the individual of C for the newly created
population N .

Let P, C : X ↔ [1..n] and d : [1..n] ↔ 1, where we assume that the columns of
C have already been permuted randomly. We want to construct a new population
N , such that for each i ∈ [1..n] either P (i) or C(i) is the i-th column of N . The
vector d specifies which columns should be adopted in the new population N .

di ⇐⇒ P (i) should be adopted

and
di ⇐⇒ C(i) should be adopted.

More formally, the new relation N : X ↔ [1..n] is defined by

Nxi ⇐⇒ (Pxi ∧ di) ∨ (Cxi ∧ di).
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This can easily be transformed into a relational expression:

Nxi ⇐⇒ (Pxi ∧ di) ∨ (Cxi ∧ di)

⇐⇒ (Pxi ∧ Ld�xi) ∨ (Cxi ∧ Ld�xi)

⇐⇒ ((P ∩ Ld�) ∪ (C ∩ Ld�))xi

Hence, the new population N is determined by

N = (P ∩ Ld�) ∪ (C ∩ Ld�).

The expression Ld� is the composition of two vectors of length n which can
be carried out in time O(n2). The whole determination of N can be done in time
O(n2) as all other operations used in the expression for N can also be executed
in time O(n2) as mentioned in Section 2.

5 Computing Exact Solutions

Using the expressions derived in Section 3 we give exact approaches for the
three considered problems. Here we work with a relation M, called membership
relation, instead of the relation P .

The membership relation has been shown to be very useful for the computa-
tion of exact solutions using relational algebra.

M : X ↔ 2X MxY :⇐⇒ x ∈ Y .

The membership relation has size n × 2n. This means that even for small
dimensions it is not possible to store this relation. Note, that the relation M lists
all search points of the search space {0, 1}n columnwise and that, in general, it
is impossible to evaluate all search points in the search space sequentially in a
reasonable amount of time.

In Section 2 we have mentioned that relations can be represented in a compact
form using OBDDs. This is indeed the case if we consider the relation M. It can
be shown that this relation can be represented by an OBDD using O(n) nodes.
The main argument for that is that the underlying function is similar to the
direct storage access function (see e.g. Wegener (2000)). For a complete proof on
the stated upper bound see Leoniuk (2001). Nevertheless, the stated approach
has its limitations as the OBDDs that are constructed during the computation
process may be exponentially large in n. As described in Section 3, the vector

v = L(RM ∩M)
�

of type 2X ↔ 1 specifies all vertex covers of R. To select the vertex covers with
the minimal number of vertices, we need the size-comparison relation

S : 2X ↔ 2X defined by SAB :⇐⇒ |A| ≤ |B|.
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The relation S has size 4n but can be represented by an OBDD of size O(n2)
as shown by Milanese (2003). We use the ordering S to develop a relational
expression which specifies the minimal subsets in v.

y is a smallest element of v with respect to S ⇐⇒ vy ∧ ∀z : vz → Syz

⇐⇒ vy ∧ ¬∃z : vz ∧ Syz

⇐⇒ vy ∧ Svy

⇐⇒ (v ∩ Sv)y

The relational expression
m = v ∩ Sv

describes the set of the smallest elements in v with respect to the order S, hence
we obtain a vector of the same type as v, specifying the smallest vertex covers
of R. By choosing a point p ⊆ m and computing the product Mp we achieve a
vector of the type X ↔ 1 that represents a minimal vertex cover of R.
Similarly, we can compute all independent sets of R with

v = L(RM ∩M)
�

and all cliques of R with

v = L((I ∪R)M ∩M)
�

using the expressions introduced in Section 3. In this cases we use the relational
expression

v ∩ S
�

v

to select the largest elements of v with respect to the order S. Hence, we achieve
the maximal independent sets respectively the maximal cliques of R.

6 The Quality of a Standard Evolutionary Approach

We have shown in the previous sections how the modules of an evolutionary
algorithm can be formulated using relational algebra. In addition we have given
formulations for the exact computation of the considered problems. In the follow-
ing we present some experimental results. We consider the vertex cover problem
and want to evaluate the quality obtained by a standard evolutionary approach
after a small number of generations, namely 100. He, Yao, and Li (2005) have
studied the behavior of different evolutionary algorithms for the vertex cover
problem. To examine the quality of the algorithms they have considered different
graph classes, namely a bipartite graph and a graph with one large cycle, where
the value of an optimal solution is known. Here we consider random graphs,
where it is hard to obtain optimal solutions. Using the exact method proposed in
Section 5 we are able to compare the results obtained by a standard evolutionary
algorithm with the value of an optimal solution.
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We have carried out all these computations using the RelView-System that al-
lows the evaluation of relation-algebraic terms and programs. Our computations
were executed on a Sun-Fire 880 running Solaris 9 at 750 MHz.

The general framework used in this work allows to carry out all the operations
using RelView and shows the quality of the results obtained by a standard
evolutionary approach with respect to the optimal solutions. But it should be
mentioned that RelView is designed as a general tool for relational algebra and
it is not tuned with respect to the considered problems. Especially it is not
designed in a special way for evolutionary computation. The runtimes for the
exact approach were often less then 10 seconds, but quite high, around 120
seconds, in the case of the evolutionary approach. This is due to the fact that that
RelView has not been designed for the implementation of randomized algorithms
constructing many random relations. To get fast evolutionary algorithms based
on relational algebra, one has to implement the modules of an EA in a special way
as shown in Sections 2–4. The reason for using RelView is the general framework
and the fast computation of the exact solutions.

In our experiments we consider a simple evolutionary algorithm and random
graphs with n = 50 vertices. The initial population is chosen by applying n times
a random version of the well-known approximation algorithm due to Gavril and
Yannakakis (see e.g. Cormen, Leiserson, Rivest, and Stein (2001)). Starting with
the given graph, in each step an edge e = {u, v} is chosen uniformly at random
and u, v are included in the solution. After that all edges incident to u or v are
deleted from the graph. The process is iterated until the graph is empty. It is
well known that solutions constructed in this way have size at most twice the
size of an optimal solution.

The population has size n, we use uniform-crossover and after that mutation
where each bit is flipped with probability 1/n. The probability for a crossover
to take place is pc = 0.8. After n children have been created in this way, we
apply tournament selection with n tournaments of size 2 where one participant
is chosen from the parents and one from the children as explained in Section 4.
Note, that only individuals being vertex covers are accepted for the next gener-
ations as in a tournament a feasible solution always wins against an unfeasible
one. In the case that both individuals of a tournament are vertex covers an in-
dividual with the smallest number of vertices is chosen for the next generation.
The algorithm is terminated after 100 generations. Only the initial population
is chosen in a way that is special for the vertex cover problem. The other parts
of the algorithm are general and are often used in the scenario of black-box op-
timization. Therefore our aim is not to beat specific algorithms for the vertex
cover problem, but to examine the quality of solutions obtained by a standard
evolutionary approach with respect to the value of an optimal one.

In our experiments we considered random graphs, where each edge is cho-
sen with a certain probability p. We examine for each p ∈ {0.05, 0.1, 0.15, 0.2}
ten random graphs. The results obtained by the evolutionary algorithm are com-
pared with the value of an optimal solution computed by using the exact method
of Section 5, and the best solution included in the initial population. Note, that
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Fig. 1. Results on random graphs with 50 vertices

the initial population is constructed by applying n times a random version of
the approximation algorithm due to Gavril and Yannakakis.

Figure 1 shows our results. Here the 40 instances are listed at the x-axis,
where the first ten instances correspond to the value p = 0.05, the next ten
instances to p = 0.1 and so on. On the y-axis we list the value of an optimal
solution, the results obtained by the initialization of the population, and the
results achieved by the evolutionary algorithm. Figure 1 shows that the initial
population is always far from optimal, but even within this small number of
generations highly improved by the standard evolutionary approach such that
optimal or nearly optimal solutions are constructed.

7 Conclusions

We have taken a relation-algebraic view on evolutionary algorithms for some
graph problems. It turns out that the evaluation of a population can be sped
up by using relation-algebraic expressions to test whether the solutions of the
population fulfill given constraints. In the case of the three considered graph
problems the computation time for one generation can be reduced from Θ(n3) to
O(n2.376). We have also shown how the evaluation process of a population can be
extended to the evaluation of the whole search space. This leads to exact methods
for the considered problems which allows to evaluate the results obtained by
evolutionary algorithms with respect to the optimal solutions. Although we have
considered EAs that are not tuned in a special way for the problem considered in
our experiments, namely the vertex cover problem, the comparison shows that
the solutions obtained by a standard evolutionary algorithm are, even within a
small number of generations, not far from optimal.
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Abstract. In this paper, we present a scatter search algorithm for the well-
known nurse scheduling problem (NSP). This problem aims at the construction 
of roster schedules for nurses taking both hard and soft constraints into account. 
The objective is to minimize the total preference cost of the nurses and the total 
penalty cost from violations of the soft constraints. The problem is known to be 
NP-hard. The contribution of this paper is threefold. First, we are, to the best of 
our knowledge, the first to present a scatter search algorithm for the NSP. 
Second, we investigate two different types of solution combination methods in 
the scatter search framework, based on four different cost elements. Last, we 
present detailed computational experiments on a benchmark dataset presented 
recently, and solve these problem instances under different assumptions. We 
show that our procedure performs consistently well under many different 
circumstances, and hence, can be considered as robust against case-specific 
constraints. 

Keywords: meta-heuristics; scatter search; nurse scheduling. 

1   Introduction 

Personnel scheduling problems are encountered in many application areas, such as 
public services, call centers, hospitals, and industry in general. For most of these 
organizations, the ability to have suitably qualified staff on duty at the right time is of 
critical importance when attempting to satisfy their customers’ requirements and is 
frequently a large determinant of service organization efficiency [1,2]. This explains 
the broad attention given in literature to a great variety of personnel rostering 
applications [3,4]. In general, personnel scheduling is the process of constructing 
occupation timetables for staff to meet a time-dependent demand for different services 
while encountering specific workplace agreements and attempting to satisfy 
individual work preferences. The particular characteristics of different industries 
result in quite diverse rostering models which leads to the application of very different 
solution techniques to solve these models. Typically, personnel scheduling problems 
are highly constrained and complex optimization problems [4,5].  
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In this paper, a procedure is presented to solve the nurse scheduling problem (NSP) 
which involves the construction of duty rosters for nursing staff over a pre-defined 
period. Problem descriptions and models vary drastically and depend on the 
characteristics and policies of the particular hospital. Due to the huge variety of hard 
and soft constraints, and the several objective function possibilities, the nurse 
scheduling problem has a multitude of representations, and hence, many exact and 
heuristic procedures have been proposed to solve the NSP in various guises. Recent 
literature surveys [6,7] give an overview of all these procedures, and mention 
simulated annealing, tabu search and genetic algorithms as popular meta-heuristics for 
the NSP.  

In constructing a nurse schedule, a set of nurses need to be assigned to days and 
shifts in order to meet the minimal coverage constraints and other case-specific 
constraints and to maximize the quality of the constructed timetable. Consequently, 
the NSP under study is acquainted with three main components, i.e. 

- Each nurse needs to express his/her preferences as the aversion to work on a 
particular day and shift. According to [8], quantifying these nurses’ preferences in 
the objective function maintains fairness and guarantees the quality of the nurse 
roster over the scheduling horizon.  

- The minimal coverage constraints embody the minimal required nurses per shift 
and per day, and are inherent to any shift scheduling problem. These constraints 
are handled as soft constraints that can be violated at a certain penalty cost 
expressed in the objective function. 

- The case-specific constraints are not inherent to any NSP instance but are rather 
case-specific, i.e. determined by personal time requirements, specific workplace 
conditions, national legislation, etc…. These constraints are handled as hard 
constraints which can not be violated at a certain penalty cost. 

Hence, the objective of the NSP is to minimize the sum of the nurses’ preferences and 
the total penalty cost of violating the minimal coverage requirements subject to 
different case-specific (hard) constraints. For a more formal description of the NSP, 
we refer to [9]. The problem is known to be NP-hard [10].  

In section 2 of this paper, we briefly review the philosophy of the scatter search 
template provided by [11]. Moreover, we discuss and illustrate the underlying 
principles and the implementation of the scatter search framework for the nurse 
scheduling problem. In section 3, we present new computational results tested on the 
NSPLib dataset proposed by [12]. In section 4, conclusions are made and directions 
for future research are indicated. 

2   Scatter Search for NSP 

Scatter search [11] is a population-based meta-heuristic in which solutions are 
combined to yield better solutions using convex linear or non-linear combinations. 
This evolutionary meta-heuristic differs from other evolutionary approaches, such as 
genetic algorithms, by providing unifying principles for joining solutions based on 
generalized path constructions in Euclidian space and by utilizing strategic designs 
where other approaches resort to randomization. The scatter search methodology is 
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very flexible, since each of its elements can be implemented in a variety of ways and 
degrees of sophistication. Hence, the scatter search template has been successfully 
applied in several application areas. However, to the best of our knowledge, the 
scatter search framework has been applied only once to personnel rostering, more 
precisely on a labour scheduling problem by [13]. In their paper, they describe the 
development and implementation of a decision support system for the optimization of 
the passenger flow by trading off service quality and labour costs at an airport. In 
their search for the minimal number of employees, their path relinking approach 
concentrates on the shifts which are staffed differently in the parent solutions.  

For an overview of the basic and advanced features of the scatter search meta-
heuristic, we refer to [14,15]. In the following, we describe our implementation of the 
scatter search approach to the nurse scheduling problem. The pseudo-code for our 
generic scatter search template to solve the NSP is written below. 

 Algorithm Scatter Search NSP 
  Diversification Generation Method 
  While Stop Criterion not met 
   Subset Generation Method 
   Subset Combination Method 
   Improvement Method 
   Reference Set Update Method 
  Endwhile 

The Diversification Generation Method. In this initialization step, a large pool of P 
initial solution vectors is generated. A solution point is encoded by the nurse-day 
representation [6] which basically indicates the assignment of each nurse to a shift on 
each day. Since useful information about the structure of optimal solutions is typically 
contained in a suitably diverse collection of elite solutions, the initial solutions are 
generated in such a manner a critical level of diversity is guaranteed [14,15]. In order 
to generate a diverse set of initial solutions, we create x solutions using a constructive 
heuristic and P – x solutions in a random way. The constructive heuristic schedules 
the nurses in a random sequence taking both preference costs and penalty cost of 
violating the coverage constraints into account. This greedy heuristic is conceived as a 
minimum cost flow problem which represents all shifts on all days to which a 
particular nurse can be assigned to. Since not all case-specific constraints (e.g. the 
maximum number of assignments) can be modelled in the network, it has been 
implemented by a k-shortest path approach. Based on this initial population, a subset 
of the population elements are designated to be reference solutions. This reference set 
contains b1 high quality solutions (Refset1) and b2 diverse solutions (Refset2). The 
construction of Refset1 starts with the selection of the best b1 solutions in terms of 
solution quality out of the P initial solutions. In order to select the diverse solutions 
(Refset2), the minimum distance between all remaining P - b1 solutions and the b1 
solutions is calculated based on the adjacency degree of [16]. In pursuit of diversity, 
the b2 solutions with maximal distance will be selected for membership of Refset2 
while all other P – b1 – b2 solutions are disregarded. 

The Solution Generation Method. After the initialization phase, scatter search 
operates on this reference set by combining pairs of reference solutions in a 
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controlled, structured way. Two elements of the reference set are chosen in a 
systematic way to produce points both inside and outside the convex regions spanned 
by the reference solutions. [14] suggest to create new solutions out of all two-element 
subsets. Choosing the two reference solutions out of the same cluster stimulates 
intensification, while choosing them from different clusters stimulates diversification. 
Hence, in our scatter search, the solution method consists of the evaluation of all b1 × 
b1, b1 × b2 and b2 × b2 combinations in a random sequence. 

The Solution Combination Method. A new solution point is the result of a linear 
combination of two population elements in the reference set. The process of 
generating linear combinations of a set of reference solutions may be characterized as 
generating paths between solutions [17]. A path between solutions will generally 
yield new solutions that share a significant subset of attributes contained in both 
parent solutions, which can differ according to the path selected. The moves introduce 
attributes contributed by a guiding solution and/or reduce the distance between the 
initiating and the guiding solution. The goal is to capture the assignments that 
frequently or significantly occur in high quality solutions, and then to introduce some 
of these compatible assignments into other solutions that are generated by a heuristic 
combination mechanism. 

Our specific combination method relies on problem-specific information of both 
the initiating and the guiding solution schedule to create a new schedule, and takes 
four criteria into account. Two of these criteria incorporate objective function related 
data into account, as follows:  

− Preference costs: Since the overall objective is to minimize the nurses’ aversion 
towards the constructed work timetable, the day/shift preference cost expressed by 
each nurse is an important determinant in constructing high-quality new solution 
points. 

− Coverage information: In order to minimize the penalty cost of violating the 
minimal coverage constraints, the algorithm penalizes those shifts where the 
coverage constraints are violated. In doing so, the solution combination method 
biases the initiating solution towards a (more) feasible solution.  

The other two criteria incorporate information to maintain the “good” characteristics 
of both the initiating and the guiding schedule, as follows: 

− Critical shifts of the initiating solution: In directing the initiating solution towards 
the guiding solution, the algorithm prevents the removal of critical shifts from the 
initiating solution, which, in case of removal, would lead to an additional violation 
of the coverage constraints. In doing so, the algorithm aims at the construction of a 
new solution point that does not encounter any (additional) violations of the 
coverage constraints.  

− Bias to the guiding solution: The algorithm guides the initiating solution to the 
assignments of the guiding solution, in order to decrease the distance between the 
two schedules by introducing attributes of the guiding solution. 

These four elements will be carefully taken into account for each move from an 
initiating solution to a guiding solution. Since the re-linking process of two solutions 
out of the reference set can be based on more than one neighbourhood [15], our 
algorithm makes use of two types of neighbourhood moves: a nurse neighbourhood 
move or a day neighbourhood move. 
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In the nurse neighbourhood move, the schedule of a single nurse of the initiating 
solution is directed towards the schedule of the corresponding nurse in the guiding 
solution. Therefore, the algorithm relies on a k-shortest path approach to optimize the 
schedule for a particular nurse taking into account a weighted average of the four 
aforementioned elements. The scheduling of a single nurse at minimum cost over the 
complete scheduling horizon can be considered as a minimum cost flow problem and 
can be solved by any shortest path algorithm. Moreover, since not all case-specific 
constraints can be incorporated in a shortest path algorithm, a k-shortest path 
approach is implemented where the outcome of this algorithm (i.e. a nurse schedule) 
should be checked whether it is feasible or not with respect to all these constraints. If 
the outcome is not feasible, a 2nd shortest path will be generated and checked for 
feasibility. This process continues until the shortest feasible pattern (i.e. the kth 
shortest path) for the nurse is found. The graph used for our algorithm consists of 
#days*#shifts nodes (plus two extra dummy nodes representing the start and end of 
the network) representing the daily shift assignments for the nurse under study. An 
arc (a, b) is drawn to connect node a representing a possible shift assignment on day j 
to node b representing a shift assignment on day j + 1. The distances between nodes 
are made up of a weighted average of the four abovementioned elements. In 
calculating the new schedule for a particular nurse, we rely on the algorithm of [18]. 

In the day neighbourhood move, the roster of a single day of the initiating solution 
is directed towards the roster of the corresponding day of the guiding solution, given 
the assignments of the nurses on all other days in the initiating solution. To that 
purpose, we transform a single day roster to a linear assignment problem (LAP) 
matrix, and solve it by means of the Hungarian method [19]. In constructing this 
matrix, we duplicate each shift column such that each shift has a number of columns 
that is equal to its coverage requirements. Moreover, we add dummy nurses and/or 
dummy shifts to allow under- or over-coverage of the coverage requirements. The 
number of extra dummy nurses equals the total daily nurse requirements, and 
penalizes under-coverage when a required shift column has to be assigned to a 
dummy nurse. The number of extra dummy shifts equals the total number of (non-
dummy) nurses and allows over-coverage of the coverage requirements when nurses 
are assigned to dummy shifts. The cost of assigning non-dummy nurses to one of the 
dummy shifts is equal to the minimum cost of the (feasible) shifts a nurse can be 
assigned to. The LAP matrix contains costs associated with the four criteria the 
solution combination mechanism is based on. Furthermore, the LAP matrix excludes 
certain shift assignments to cope with the case-specific constraints, taking into 
account the fixed assignments of all other days of the current solution. 

This solution combination method can be best illustrated on an example NSP 
instance with 5 nurses and a scheduling period of 4 days. We assume that each  
day consists of three working shifts (e.g. early (s1), day (s2), night (s3)) and a free shift 
(s4). The nurses’ preferences as well as the minimal coverage requirements are 
displayed in the top table of figure 1. Since “s4” is used to refer to a free shift, its daily 
coverage requirements equal zero. We assume some additional case specific 
constraints as follows: the number of assignments varies between a minimal value  
of 3 and a maximal value of 4. The consecutive working shifts vary between a 
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minimal value of 2 and a maximal value of 4. The assignment of nurses to maximal 
one shift per day and the succession constraints are inherent to continuous personnel 
scheduling. The latter constraint implies forbidden successive assignments between s3 
and s1, s3 and s2 and s2 and s1. 

 

s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4

Nurse 1 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9
Nurse 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2
Nurse 3 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6
Nurse 4 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0
Nurse 5 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2
Scheduled 1 2 0 2 3 2 0 0 2 1 2 0 1 1 3 0 2 1 1 1 2 2 1 0 2 2 1 0 2 1 1 1
Coverage 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0
Violation 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Guiding Solution
Day 1 Day 2 Day 3 Day 4

Initiating Solution
Day 1 Day 2 Day 3 Day 4

s1 s2 s3 s4

Day 1 9 / -100 / 0 / 0 4 / 0 / 0 / 0 7 / -100 / 0 / 0 2 / 0 / 0 / -10

Day 2 2 / 0 / 0 / -10 0 / 0 / 0 / 0 5 / -100 / 0 / 0   6 / 0 / 0 / 0

Day 3 4 / 0 / 0 / -10 6 / 0 / -100 / 0 1 / 0 / 0 / 0 5 / 0 / 0 / 0

Day 4 2 / -100 / 0 / -10 2 / 0 / 0 / 0 2 / 0 / 0 / 0 0 / 0 / 0 / 0

s1 s2 s3 s4

Nurse 1 0 / - / 0 / 0 0 / - / -100 / -10 3 / - / 0 / 0 6 / - / 0 / 0

Nurse 2 2 / - / 0 / 0 8 / - / 0 / -10 0 / - / 0 / 0 7 / - / 0 / 0

Nurse 3 9 / - / 0 / 0 8 / - / -100 / 0 3 / - / 0 / -10 4 / - / 0 / 0

Nurse 4 2 / - / 0 / -10 0 / - / 0 / 0 5 / - / 0 / 0 6 / - / 0 / 0

Nurse 5 7 / - / 0 / -10 1 / - / 0 / 0 1 / - / 0 / 0 2 / - / 0 / 0  
* PC / CP / CS / BG is used to display preference cost / coverage penalties / critical shifts / bias to  
   the guiding solution 
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s 1 s 2 s 2 s 3 ds ds ds ds ds

Nurse 1 × -110 -110 3 -110 -110 -110 -110 -110

Nurse 2 2 × × × 2 2 2 2 2

Nurse 3 × -92 -92 -7 -92 -92 -92 -92 -92

Nurse 4 -8 0 0 × -8 -8 -8 -8 -8

Nurse 5 -3 × × × -3 -3 -3 -3 -3

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0

dn 100 100 100 100 0 0 0 0 0  

 

s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s 1 s 2 s 3 s 4

Nurse 1 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9 3 2 0 1 0 0 3 6 2 0 4 1 3 5 4 9
Nurse 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2 8 0 3 9 2 8 0 7 8 1 4 9 9 6 2 2
Nurse 3 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6 4 5 9 2 9 8 3 4 0 6 1 5 0 0 6 6

Nurse 4 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0 9 4 7 2 2 0 5 6 4 6 1 5 2 2 2 0

Nurse 5 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2 1 9 6 8 7 1 1 2 3 2 8 8 3 0 7 2
Scheduled 2 2 0 1 3 2 0 0 3 0 2 0 2 1 2 0 1 2 0 2 2 2 1 0 2 1 2 0 1 1 3 0
Coverage 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0 2 1 1 0 1 2 1 0 2 1 1 0 2 1 1 0
Violation 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0

New Solution

Day 1 Day 2 Day 3 Day 4

New Solution

Day 1 Day 2 Day 3 Day 4

 

Fig. 1. The Solution Combination Method in nurse and day neighbourhood space 

Day neighbourhood Nurse neighbourhood
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The left top table is assumed to be the initiating solution from Refset2 with a total 
preference cost of 81 and four coverage violations (the specific assignments have 
been encircled). Since the algorithm penalizes each coverage violation with a penalty 
cost of 100, the total solution quality of the initiating solution equals 481. The right 
table is assumed to be the guiding solution from Refset1 with a total preference cost of 
70 and no coverage penalties. The adjacency degree measures the distance between 
schedules as the sum of zeros (identical day/shift assignment) and ones (different 
day/shift assignment), which leads to a total distance of 12. 

In the remainder of this section, we illustrate the nurse neighbourhood move for 
nurse 4 (left part) and the day neighbourhood move for day 2 (right part) on our two 
parent solution schedules.  

Nurse neighbourhood move: The left table below the parent solutions displays the 
calculations of the four elements of this section, i.e. the nurse’s preference costs, the 
coverage penalties, the critical shifts and the assigned shifts of the guiding solution. 
The coverage penalty is set at 100, while the assigned shifts of the guiding solution 
have a negative cost of 10. The critical shifts are found for those assigned shifts of the 
initial schedule of nurse 4 when the difference between the number of scheduled 
nurses (row ‘Scheduled’) and the assignments of nurse 4 is lower than the minimum 
required number of nurses (row ‘Coverage’).  

The sum of all costs in the table results in the cost values on the corresponding arcs 
of the network representing the scheduling of the nurse over the complete scheduling 
horizon. The graph counts 4 * 4 nodes and a start and an end dummy node. The 
shortest path in the network is s3 – s3 – s4 – s1 with a distance of -291. However, the 
path is infeasible since the constraint of minimal 2 consecutive working days is 
violated. Based on the same argument, the 2nd shortest path, i.e. s1 – s3 – s4 – s1 with a 
distance of -289, is infeasible. The next shortest path is s1 – s1 – s1 – s1 with a distance 
of -213. This path is feasible for all case-specific constraints and leads to the newly 
constructed schedule at the left bottom part of the figure. The new solution point has a 
total solution quality of 386. The total preference cost has increased from 81 to 86, 
whereas the number of coverage violations has decreased from 4 to 3. The distance 
between the new initiating solution point and the guiding solution point has also 
decreased from 12 to 11. 

Day neighbourhood move: The right table below the parent solutions displays the 
calculations of the four elements in a similar way as previously, but from the second 
day’s point-of-view. The corresponding LAP matrix contains the sum of three of 
these four elements, i.e. the nurse’s preference costs, the total critical shift cost and 
the cost of the assigned shifts of the guiding solutions. The coverage penalties have 
been incorporated implicitly in the structure of the LAP matrix since dummy nurses 
(dn) have been inserted which penalize the under-coverage of shifts. In contrast, the 
incorporation of dummy shifts (ds) allows the over-coverage of shifts. The case-
specific constraints have been embedded in the LAP matrix by excluding some 
assignments (denoted by crossed cells). The optimal LAP solution has been encircled 
and leads to the newly constructed schedule at the right bottom part of the figure. The 
new solution point has a total solution quality of 374. The total preference cost has 
decreased from 81 to 74, and the number of coverage violations has also decreased 
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from 4 to 3. The distance between the new initiating solution point and the guiding 
solution point has not changed and remains 12. 

The Improvement Method. The improvement method applies heuristic processes to 
improve both total preference cost and coverage infeasibilities of the newly generated 
solution points. To that purpose, we implemented the three complementary local 
search algorithms of [9], each focusing on a different part of the scheduling matrix. 
The pattern-based local search aims at the optimization of the schedule for a 
particular nurse, given the schedules of all other nurses. The day-based local search 
optimizes the schedule for one day given the assignments of the nurses on all other 
days. The schedule-based local search aims to improve the quality of the schedule by 
swapping (parts of) schedules between nurses. 

The Reference Update Method. After the application of the diversification and 
intensification process, the child solutions are added to the reference set if certain 
threshold values for the criteria which evaluate the merit of newly created solution 
points are met. A newly generated solution may become a member of the reference 
set either if the new solution has a better objective function value than the solution 
with the worst objective value in Refset1 or if the diversity of the new solution with 
respect to the reference set is larger than the solution with the smallest distance value 
in Refset2. In both cases the new solution replaces the worst and the ranking is 
updated to identify the new worst solution in terms of either quality or diversity. The 
reference set is dynamically updated. In contrast to a static update where the reference 
set is updated after combination of all generated sub-sets, a dynamic update evaluates 
each possible reference set entrance instantly. In this way, new “best” solutions can be 
combined faster and inferior solutions are eliminated faster. During the search, 
diversity in the reference set is maintained through the use of these artificial tiers in 
the reference set but also through a threshold distance depending on the problem size 
under study. The latter prevents the duplication of solution points in the reference set 
and/or the entrance of highly resembling solutions. 

3   Computational Results 

In this section, we present computational results for our scatter search procedure 
tested on the NSPLib problem instances of [12]. This testset contains 4 sub-sets with 
25, 50, 75, and 100 nurses and a 7-days scheduling horizon (this so-called diverse set 
contains 4 * 7290 instances), and 2 sub-sets with 30 or 60 nurses and a 28-days 
scheduling horizon (this realistic set contains 2 * 960 instances). The nurses’ 
preference structure and the coverage requirements of each sub-set are characterized 
by systematically varied levels of various NSP complexity indicators proposed in 
[12]. All sets have been extended by 8 mixes of case-specific constraints which 
appear frequently in literature [6], i.e. the minimum/maximum number of working 
assignments, the minimum/maximum number of assignments per shift type, the 
minimum/maximum consecutive working shifts, and the minimum/maximum 
consecutive working shifts per shift type. The testset, the sets of case-specific 
constraints and results can be downloaded from http://www. projectmanagement. 
ugent.be/nsp.php. The tests have been carried out under a stop criterion of 1,000 or 
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5,000 schedules (Toshiba SPA10 2.4Ghz processor). In the next sub-section, we 
compare different neighbourhood combination versions into detail. In section 3.2, we 
present best known solutions for our large dataset. 

3.1   Day Neighbourhood or Nurse Neighbourhood 

In order to test the performance of our two solution combination methods, the day 
neighbourhood (DNH) and nurse neighbourhood (NNH), we have randomly selected 
576 instances from the 25- and 288 instances from the 30- nurse instances. Each 
neighbourhood move (day or nurse) contains a mix of the 4 elements, i.e. preference 
cost (PC), coverage penalty (CP), critical shift calculation (CS) and the bias to the 
guiding solution (BG). Both the nurse and the day neighbourhood moves will be 
compared with simple and straightforward moves, based on 

• Complete replacement by the guiding solution (CGS): The day (DNH) or nurse 
(NNH) of the initiating solution will be completely replaced by the assignments of 
the guiding solution.  

• Random cost (RAN): The cost matrix simply contains random numbers instead of 
the sum of PC, CP, CS and BG. 

• Percentage of guiding solution (%GS): A randomly selected part of the day (DNH) 
or nurse (NNH) of the initiating solution will be replaced by the assignments of the 
guiding solution. 

Table 1. Average solution quality (Avg_Sol) and Ranking for the various combination methods 

  PC   CP   CS   BG Avg_Sol Ranking Avg_Sol Ranking Avg_Sol Ranking Avg_Sol Ranking
× - - - 310.67 17 1,498.21 9 307.52 14 1,500.20 15
- × - - 312.26 18 1,528.22 18 307.37 11 1,501.21 16
- - × - 308.43 9 1,507.74 11 307.86 18 1,498.72 13
- - - × 306.67 5 1,496.02 6 307.00 5 1,495.93 9
× × - - 310.25 14 1,515.23 13 307.57 16 1,542.96 18
× - × - 309.18 11 1,496.80 7 307.67 17 1,498.66 12
× - - × 306.66 4 1,493.21 4 307.00 5 1,495.16 5
- × × - 310.40 15 1,519.58 15 307.50 13 1,498.87 14
- × - × 309.37 13 1,519.87 16 307.03 7 1,494.11 3
- - × × 306.57 3 1,492.17 3 307.27 10 1,495.43 7
× × × - 308.39 8 1,509.86 12 307.44 12 1,497.53 11
× × - × 309.26 12 1,518.92 14 306.97 4 1,496.35 10
× - × × 305.82 1 1,490.34 2 307.19 8 1,495.65 8
- × × × 308.99 10 1,494.23 5 307.21 9 1,495.24 6
× × × × 306.20 2 1,486.36 1 306.94 3 1,493.77 2

  CGS - - - - 306.68 6 1,497.63 8 306.14 1 1,492.97 1
  RAN - - - - 310.56 16 1,524.50 17 307.55 15 1,504.30 17
  %GS - - - - 307.01 7 1,498.63 10 306.71 2 1,494.71 4
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The results displayed in table 1 can be summarized as follows. First, the day-based 
neighbourhood (DNH) outperforms, on the average, the nurse-based neighbourhood 
(NNH). Indeed, 13 (10) of the 18 tests results in a DNH cost which is lower than its 
corresponding NNH cost. However, the best results can be obtained with the NNH 
method. The best result for the N25 (N30) instances amounts to 305.82 (1,486.36) 
which outperforms the best known results for the DNH method (306.94 and 1,492.97, 
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respectively). Second, the top 4 results for the NNH have been displayed in bold, and 
show that the three elements, PC, CS and BG are relevant cost factors (3, 3 and 4 
times used, respectively). The CP cost factor has been used only once in the top 4 
results, and seems to be less important. Last, the simple CGS approach is the best 
approach for the DNH method, but is not able to outperform the best known results 
with the NNH method. The %GS has an average (good) performance for the NNH 
(DNH) method while the RAN method leads to rather poor results for both solution 
combination methods.  

In section 3.2, we report best known solutions for all the data instances, based on 
the solution combination method NNH-PC/CS/BG for the diverse set with a 7-days 
scheduling horizon (N25, N50, N75 and N100) and the solution method NNH-
PC/CP/CS/BG for the realistic set with a 28-days scheduling horizon (N30 and N60). 

3.2   New Best Known Solutions 

In order to benchmark our results and present best known state-of-the-art solutions, 
we have tested all 31,080 instances on all case-specific constraint files, resulting in 
248,640 instances in total. We have truncated each test after a stop criterion of 1,000 
and 5,000 schedules. Table 2 displays the results for the 5,000 schedule stop criterion. 
A similar table can be downloaded from www.projectmanagement.ugent.be/nsp.php 
with a 1,000 schedule stop criterion. The table displays the average solution quality, 
split up in the average total preference cost (Avg_Pref) and the average penalty cost 
(Avg_Pen) which is calculated as the average number of violations of the minimal 
coverage requirements times the penalty cost of 100, the required CPU time 
(Avg_CPU), the percentage of files for which a feasible solution has been found 
(%Feas), and the percentage deviation from the LP optimal solution which serves as a 
lower bound (%Dev_LP). The latter has been found by a simple and straightforward 
LP model, and has been used for similar tests by [9]. No LP lower bounds could be 
provided for the N30 en N60 sets, since the number of constraints exceeds the limits 
for the industrial LINDO optimization library, version 5.3 [20].  

In order to fine-tune a number of parameters, we have run our procedure on a small 
subset of all instances under different parameter settings. In order to find an 
appropriate balance between the diversification and intensification process, we have 
combined the three proposed local search heuristics into a variable neighbourhood 
search. For the N25 instances, all nurses are subject to the pattern-based local search 
and all days are subject to the day-based local search. The schedule-based local search 
evaluates possible swaps between whole schedules and two-day sub-schedules. In our 
tests, 40% of all two-day sub-schedules are swapped between the nurses for all 
testsets. The population size (b1 + b2) has been set to 15 (10) for the N25, N50 and 
N30 (N75, N100 and N60) instances, respectively. Each time, 80% of these 
population elements (b1) have been put into the Refset1. Moreover, 40% of all nurses 
are subject to the NNH move for N25 and N50 instances, 60% for the N75 instances, 
20% for the N100 instances and all nurses for the N30 and N60 instances.   

The table reveals that the gap between the obtained solutions and the LP based 
lower bounds is in many cases very small. For some of the cases, the gap is somewhat 
larger which gives an indication of the constrainedness of the problem instances. Our 
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scatter search algorithm is able to outperform (equalize) 40.5% and 62.06% (27.12% 
and 1.45%) of respectively the diverse and realistic instances solved by the 
electromagnetic procedure of [9] with a stop-criterion of 1,000 schedules, and 33.29% 
and 64.42% (45.02% and 1.74%) of respectively the diverse and realistic instances for 
the 5,000 schedules. 

Table 2. Computational Results for the diverse and realistic dataset for 5,000 schedules  

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 252.23 53.02 88.27% 1.61 0.19% 502.66 84.79 90.03% 5.33 0.25%
Case 2 240.86 53.02 88.27% 1.03 0.08% 480.42 84.79 90.03% 3.76 0.11%
Case 3 268.40 53.76 88.08% 2.31 1.11% 529.16 86.80 89.66% 6.38 1.17%
Case 4 250.33 53.02 88.27% 1.58 0.14% 499.12 84.79 90.03% 5.37 0.19%
Case 5 265.94 71.12 85.88% 2.26 3.63% 527.76 142.88 85.25% 6.97 3.44%
Case 6 241.86 53.02 88.27% 1.03 0.50% 482.65 84.79 90.03% 3.77 0.59%
Case 7 284.11 125.05 80.10% 5.05 5.95% 556.82 273.20 78.29% 12.61 5.33%
Case 8 259.21 71.89 85.60% 1.67 3.26% 513.02 140.01 85.50% 5.01 3.01%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 1 762.77 150.32 88.70% 10.13 0.33% 1,223.44 166.49 90.49% 23.08 0.36%
Case 2 738.20 150.32 88.70% 10.78 0.15% 1,180.94 166.32 90.51% 21.16 0.20%
Case 3 802.67 152.43 88.37% 14.33 1.24% 1,299.15 170.40 90.01% 24.68 1.22%
Case 4 752.10 150.32 88.70% 9.83 0.23% 1,209.59 166.45 90.48% 22.09 0.28%
Case 5 802.08 202.88 86.06% 11.36 3.85% 1,280.83 260.23 86.28% 24.08 3.43%
Case 6 739.66 150.32 88.70% 8.51 0.17% 1,183.93 166.35 90.51% 21.22 0.22%
Case 7 848.60 367.17 79.48% 16.28 5.76% 1,354.75 517.49 79.49% 31.24 5.38%
Case 8 787.75 206.68 85.78% 9.42 4.30% 1,258.08 256.98 86.53% 22.11 4.11%

Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP Avg_Pref Avg_Pen %Feas Avg_CPU %Dev_LP
Case 9 1,525.63 423.65 68.02% 17.37 - 3125.66 743.65 68.54% 37.99 -
Case 10 1,429.45 392.50 69.58% 7.52 - 2935.91 677.81 70.00% 24.01 -
Case 11 1,607.99 429.58 67.60% 40.68 - 3277.91 758.54 68.44% 73.00 -
Case 12 1,465.36 392.40 69.38% 8.95 - 3006.31 677.29 69.90% 26.10 -
Case 13 1,570.33 501.67 66.35% 17.52 - 3211.65 906.46 67.92% 37.66 -
Case 14 1,444.48 394.17 69.48% 7.64 - 2963.95 681.98 69.79% 24.04 -
Case 15 1,678.09 843.75 63.33% 59.68 - 3424.43 1543.33 66.04% 105.97 -
Case 16 1,541.34 498.02 66.88% 10.41 - 3154.49 882.92 68.23% 27.44 -

N30 N60

N25 N50

N75 N100

Realistic set

Diverse set

 

4   Conclusions and Future Research 

In this paper, we have presented a new scatter search procedure for the well-known 
nurse scheduling problem. To the best of our knowledge, the literature on scatter 
search for the nurse scheduling problem is completely void. This framework has only 
been applied once on a similar problem type of labour scheduling by [13]. 

We have investigated the use of two types of solution combination methods, based 
on the combinations of sub-schedules of nurses or days. Each method calculates the 
attractiveness of the move based on four criteria. We have shown that the scatter 
search algorithm leads to promising results and hence might have a bright future in 
the further development of meta-heuristic optimization algorithms. We have tested 
our procedure on a generated problem set NSPLib, under a strict test design with a 
strict stop criterion to facilitate comparison between procedures.  

Our main future research intention is as follows. We will aim at the development 
of hybrid versions of different meta-heuristics, based on knowledge and concepts 
presented in this and many other research papers. A skilled combination of concepts 
of different meta-heuristics can provide a more efficient behaviour and a higher 
flexibility when dealing with real-world and large-scale problems. 
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Abstract. This paper proposes an evolutionary algorithm (EA) that is
applied to the traveling salesman problem (TSP). Existing approxima-
tion methods to address the TSP known to be state-of-the-art heuristics
almost exclusively utilize Lin-Kernighan local search (LKLS) and its vari-
ants. We propose an EA that does not use LKLS, and demonstrate that
it is comparable with these heuristics even though it does not use them.
The proposed EA uses edge assembly crossover (EAX) that is known to
be an efficient and effective crossover for solving TSPs. We first propose
a modified EAX algorithm that can be executed more efficiently than the
original, which is 2–7 times faster. We then propose a selection model that
can efficiently maintain population diversity at negligible computational
cost. The edge entropy measure is used as an indicator of population
diversity.

The proposed method called EAX-1AB(ENT) is applied to TSP
benchmarks up to instances of 13509 cities. Experimental results reveal
that EAX-1AB(ENT) with a population of 200 can almost always find
optimal solutions effectively in most TSP benchmarks up to instances of
5915 cities. In the experiments, a previously proposed EAs using EAX
can find an optimal solution of usa13509 with reasonable computational
cost due to the fast EAX algorithm proposed in this paper. We also
demonstrate that EAX-1AB(ENT) is comparable to well-known LKLS
methods when relatively small populations such as 30 are used.

1 Introduction

The traveling salesman problem (TSP) is a widely cited NP-hard optimization
problem. Let G = (V, E, w) be a weighted complete graph with n vertices, where
V , E, and w correspond to the set of vertices, the set of edges, and the weights
of edges. The optimal solution is defined as the Hamilton cycle (tour) with the
shortest tour length.

Many approximation methods of finding near optimal solutions have been
proposed in the area of TSP research. In Johnson and McGeoch’s surveys [1][2],
the most efficient approximation methods for TSPs were based on Lin-Kernighan
local searches (LKLS) [3]. The Iterated Lin-Kernighan (ILK) [1], for example,
is a simple yet powerful improvement on LKLS. The Chained Lin-Kernighan
(CLK)[4] are more sophisticated LKLS. Heslgaun [5] also proposed another type

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 171–182, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of efficient LKLS (LKH) where candidates of edges searched by LKLS were
effectively restricted. Iterated local searches using CLK and LKH are known to
be one of the most efficient approximation methods for TSPs.

Many evolutionary algorithms (EAs) have also been applied to TSPs. Much
effort has been devoted to designing effective crossovers suitable for TSPs be-
cause the performance of EAs is highly dependent on the design of crossovers.
Consequently, several crossovers for TSPs have been proposed. Many researchers
[6][7][8] have found that EAX crossover proposed by Nagata at el. [6] works par-
ticularly well, and several analyses have been conducted to explain why EAX
works so well [9][10][12]. There have also been extensions of EAX [7][14][8] that
have aimed at improving performance by making minor changes to EAX.

However, it has been found that EAs without LKLS are not comparable with
state-of-the-art TSP heuristics based on LKLS. Methods that have incorporated
LKLS into EAs have recently become known to be efficient heuristics for solv-
ing TSPs [11][12]. For example, Tsai et al. [12] proposed a hybrid algorithm
composed of EAX and CLK, that was comparable with other LKLS-based ap-
proaches.

We attempted to design an EA to solve TSPs without using LKLS heuristics
that would hopefully be comparable with state-of-the-art TSP heuristics based
on LKLS. To achieve this, we used EAX as a crossover and employed an edge
entropy measure to maintain population diversity. We propose a fast implemen-
tation of EAX in Section 2. A selection method that can maintain population di-
versity (edge entropy) at negligible computational cost is described in Section 3.
Section 4 discusses our experiments and the results are compared with those of
other LKLS-based approaches. Section 5 is the conclusion.

2 Fast Implementation of EAX

Here, we propose a fast implementation of EAX. First, we will briefly describe
the algorithm of EAX [6] ( See an original paper for details ).

2.1 Outline of EAX

The following is an outline of EAX, where all steps correspond to the steps in
Fig.1.

Step 1. A pair of parents is denoted as tour-A and tour-B, and GAB is defined
as a graph constructed by merging tour-A and tour-B.

Step 2. Divide edges on GAB into AB-cycles, where an AB-cycle is defined
as a closed loop on GAB that can be generated by alternately tracing
edges of tour-A and tour-B.

Step 3. Construct an E-set by selecting AB-cycles according to a given rule.
AB-cycles constructed of two edges are neglected.

Step 4. Generate an intermediate solution by applying E-set to tour-A, i.e., by
removing tour-A’s edges in the E-set from tour-A and adding tour-B’s
edges in the E-set to it.
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Step 5. Modify the intermediate solution to create a valid tour by connecting
its sub-tours. Two sub-tours are connected by respectively deleting one
edge from each sub-tour and adding two edges to connect them. Which
sub-tours are connected and which edges are deleted are determined
heuristically.

tour-A

tour-B

GAB

E-set Intermediate valid tour
Step 1

Step 5Step 4

Step 3

Step 2

edges of  tour-A, new edgesedges of  tour-B,

AB-cycle

e'

e Ui

Uj

e'''e''
e'

e Ui

Uj

e'''

e''

(d) Example of e, e', e'' and e'''

[Step 5]

e v2v1

e'
v3 v4

(e) Example of cadidates for e'(solid line). 
      Dashed lines are neglected. Circles mean 
      distances of the i-th nearest vertices from 
      v1 and v2 respectively. For example, i = 10.

Fig. 1. The outline of EAX

In Step 3, E-set can be constructed from any combination of AB-cycles. The
following two methods were proposed in previous reports [6][14].

EAX-Rand: E-set was constructed by randomly selecting AB-cycles. The in-
termediate solution tends to include edges of tour-A and tour-B evenly.
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EAX-1AB: E-set was constructed from a single AB-cycle. The intermediate
solution tends to be similar to tour-A, i.e., children are generated by remov-
ing a small number of edges from tour-A and adding the same number of
edges to it.

2.2 Fast Algorithm for EAX-1AB

Indeed, most of the computational cost of the EAX algorithm implemented by
[6] is in Step 5 of the EAX algorithm. Following is the detail of Step 5.

(5-1) Let Ui (i = 1, . . . , k) be the set of edges included in the i-th sub-tour,
where k is the number of sub-tours in an intermediate solution.

(5-2) Choose the smallest sub-tour from |Ui| (i = 1, . . . , k), where |Ui| is the
number of edges in Ui. Let Ur be a selected sub-tour.

(5-3) Find a pair of edges, e ∈ Ur and e′ ∈ Uj (j �= r), so that it minimizes
{−w(e) − w(e′) + w(e′′) + w(e′′′)} where e′′ and e′′′ are determined to
connect two sub-tours (see Fig.1(d)). Let Us be a sub-tour including edge
e′. Ur and Us are merged by Ur := (Ur ∪ Us − {e, e′}) ∪ {e′′, e′′′}, and
empty Us. Us := Uk and subtract 1 from k.

(5-4) If k is equal to 1, U1 is a valid tour, then terminate, else go to (5-2).

For the purpose of reducing the computational cost in (5-3), the original EAX
algorithm [6] restricted candidates for edge e′ around edge e (see Fig.1(e)). In
practice, for each edge v1v2(= e) ∈ Ur, edges v3v4 such that either v3 or v4

is at most the i-th nearest from v1 or v2 are considered as candidates for edge
e′. i was set to 10 in the implementation.

The computational cost for (5-3) is not excessive compared to (5-1) if an
intermediate individual is constructed from one large sub-tour and other small
sub-tours, because only the smallest sub-tour is considered to have merged into
other sub-tours. When EAX-1AB is used, changes in tour-A due to E-set are
usually localized and satisfy these conditions. When EAX-1AB is used, the com-
putational cost of (5-1) can also be reduced. Here, we propose a fast implemen-
tation of (5-1).

[Fast algorithm for Step (5-1)]
We used the data structure in Fig.2 to represent intermediate individuals. ’city’
is an array that represents the route for tour-A. ’pos’ is an array that is defined
by pos [city[ i ] ] = i (i = 1, . . . , N), where N is the number of cities.

(a) Arrays city and pos are prepared once for tour-A as shown in Fig.2(a).
(b) A new route for an intermediate individual is generated by deleting edges

(solid lines) from tour-A and adding edges(dashed lines) to it according to E-
set. An new route including sub-tours are represented as shown in Fig.2(b).
The dashed lines cut the route of tour-A. The gray solid lines connect two
corresponding cities. This procedure can efficiently be executed by using pos.
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(c) Sub-tours are represented as shown in Fig.2(c). For example, sub-tour1 in-
cludes cities located from the 5-th to the 7-th position in the array city.
However, a naive algorithm requires a computational cost of O(N) to obtain
these representations because all cities in the array city are traced according
to the new route. To reduce the computational cost, the positions of cities in-
cident to added edges on the array city must be sorted as shown in Fig.2(c).
By using this, we can know both end positions for the blocks separated by
the dashed vertical lines in Fig.2(b). If the number of removed edges is much
smaller than N (number of cities), this procedure s much faster than the
naive method.
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Fig. 2. Fast implementation of Step (5-i)

2.3 Effect of the Fast Algorithm for EAX-1AB

This subsection discusses our demonstration of the effects of the proposed al-
gorithm for EAX-1AB. EAX-1AB was executed by using both naive and fast
algorithms. We also describe the results we obtained for EAX-Rand. These EAX
crossovers were incorporated with the greedy selection model described in 4.1 and
applied to several TSP benchmarks. Details on the experiments are described
in 4.1. Table 1 lists the results where we can see EAs using the fast algorithm
for EAX-1AB can be executed 2–7 times faster than the naive method. The
efficiency, especially, becomes increasingly prominent as the number of vertices
increases. Although running time of EAX-Rand became 1–2 times faster than
the naive method, the effect of the fast implementation is not so prominent as
in the case of EAX-1AB. EAs using EAX-1AB seem to obtain slightly better
quality solutions than EAX-Rand.
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Table 1. Effects of the fast algorithm of EAX-1AB. ’time’ means average execution
time in seconds required for a run, where left and right values correspond to naive and
fast algorithms. EAs were implemented in C++ and executed on 3.06 GHz Xeon single
processor. Please refer Table 2 for ’opt’, ’err.’ and ’gen.’

Nch

50
50
50
50
50
50
50
50

Np opt. err.(%) gen.

  300
  300
  300
  300
  300
  300
  300
  300

time(s)

 mv1084
pcb1173
    u1432
 mv1748
   pr2392
pcb3038
  fnl4461
    rl5915

11    0.0099    19.0        96  ->      65
35    0.0033    21.3      117  ->      79
12    0.0259    20.6      305  ->    257
23    0.0224    24.3      469  ->    330
29    0.0043    27.3      526  ->    335 
  0    0.0165    38.6    1289  ->    504
  0    0.0546    72.5    5355  ->  4067
  0    0.0124    31.2    2878  ->  1667

instance

EAX-Rand(Greedy) EAX-1AB(Greedy)

24    0.0083     49.3         97  ->     28
37    0.0020     63.3         71  ->     25
12    0.0283     81.8       170  ->     59
18    0.0308     88.7       304  ->     72
40    0.0015    117.1      406  ->     93
  8    0.0077    182.8    1273  ->   224
  2    0.0065    341.2    4372  ->   874
  0    0.0091    138.3    3220  ->   475

Nch

30
30
30
30
30
30
30
30

Np opt. err.(%) gen.

  300
  300
  300
  300
  300
  300
  300
  300

time(s)

3 Diversity Preserving GA with EAX

We proposed the fast algorithm for EAX-1AB in the previous section. Another
important issue in this paper is a selection model. This section proposes a selec-
tion method that can efficiently and explicitly maintain population diversity.

3.1 Diversity of Population for TSP

Maintaining population diversity has been an important subject in the field of
EAs. Several EAs have been applied to TSP that took population diversity into
account [12][13][14]. Maekawa et al. [13] proposed a GA framework called TDGA
where an edge entropy measure was used to evaluate population diversity. The
edge entropy is defined as

H = −
∑
e∈X

F (e)/Np log(F (e)/Np), (1)

where X is a set of edges included in the current population, Np is the size of the
population, and F (e) is the number of edges e in the current population. TDGA
explicitly utilized H in the selection for survival. Offspring with this method
survive to minimize L − TH . L is the average tour length for the population,
and T is a parameter having positive value. However, their method involves
excessive computational cost to calculate H .

We employedH as an indicator of populationdiversity in this paper,andpropose
a method of selection for survival that can efficiently calculate H and utilize it.

3.2 Selection Model for Survival

We used the selection model described below which was used in [8][14].

[Selection Model I ]

(0) Set Np as the size of the population and Nch as the number of children
generated from a pair of parents.
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(1) Set t = 0. Generate Np solution candidates x1, x2, . . . , xNp with an appro-
priate method.

(2) Randomly shuffle the population; i.e., the index is randomly assigned.
(3) For i = 1, . . . , Np, xi and xi+1 are selected as a pair of parents. ( xi becomes

tour-A and xi+1 becomes tour-B in Fig.1. )
(4) For each pair of parents, generate Nch children from them with a crossover

operator. Select the ’best’ individual from xi and the children, that is de-
noted as x′

i. xi is replaced with x′
i.

(5) If termination conditions are satisfied, then stop, else increment t and go
to (2).

Figure 3(a) plots the population diversity H against the average tour length
L in the population. These curves represent averaged data applied to pr2392
instances in the experiments described in 2.3. Although H tends to decrease as
L decreases, H should be maintained as high as possible for each value of L.
EAX-1AB in the figure maintains H slightly better than EAX-Rand.

In Step (4) of Selection Model I, each pair of parents, {xi, xi+1}, generates
Nch children, and then the ’best’ individual is selected as x′

i to replace xi. Let y
be a child generated from {xi, xi+1}. Also, let ΔL(y) and ΔH(y) be differences
of L and H as the result of replacing xi with y. Figure 3(b) has an example of the
distribution of (ΔL(y), ΔH(y)), which are generated from a pair of parents. An
individual with the smallest ΔL(y) is selected as x′

i in a greedy manner, which
is marked with ’a’ in Fig.3(b). From the point of view of accelerating population
growth, ΔL(y) should be small. In the greedy selection, y is evaluated as

evalGreedy(y) = −ΔL(y) (2)

ΔH(y), on the other hand, should be large for the purpose of preserving pop-
ulation diversity. Consequently, there is a trade-off between ΔL(y) and ΔH(y).
The five Pareto individuals in the figure are marked ’a’–’e’.

In Step (4), x′
i should be selected from Pareto individuals. Although we could

not determine the appropriate trade-off between ΔL(y) and ΔH(y), we employed
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the following criteria to determine which individual should be selected as x′
i. An

individual with the largest evaluation value is selected as x′
i.

evalENT (y) =
{

ΔL(y)/ΔH(y) if ΔH(y) < 0
−ΔL(y)/ε if ΔH(y) ≥ 0 (3)

ε in this evaluation function has a sufficiently small positive value. Basically, child
y is evaluated by the amount of decrease in tour length per loss in population
diversity. If there are children with ΔH(y) larger than zero and ΔL(y) less
than zero, an individual with the smallest ΔL(y) is selected from these. Because
evalENT (xi) is equal to 0, xi itself survives if there are no children with a positive
evaluation value. For example in Fig.3(b), the individual marked ’c’ has been
selected as x′

i. If there are no individuals marked ’c’, child ’b’ is selected.
The proposed evaluation function is similar to that of EAX-Dis [14]. EAX-Dis

employed the following evaluation function.

evalLocalDis(y) =
{

ΔL(y)/ΔD(y) if ΔD(y) < 0
−ΔL(y)/ε if ΔD(y) ≥ 0 (4)

ΔD(y) is defined by d(xi, y)−d(xi, xi+1), where d(a, b) is the number of different
edges between individuals a and b. ΔD(y) locally estimates the loss in population
diversity caused by replacement of xi with y. Calculation of ΔD(y) is very easy.

3.3 Calculation of ΔH(y)

ΔL(y) and ΔH(y) must be calculated to evaluate each child y in Step (4) of
Selection Model I. If EAX-1AB is used, they can be calculated at negligible
computational cost because xi and y are generally similar, i.e., y(child) is pro-
duced by removing a small number of edges from xi(tour-A) and adding the
same number of edges to it. Let Ead be a set of edges added to xi and Ere be
a set of edges removed from xi to generate y. Ead and Ere are recorded in the
EAX-1AB procedure. Then, ΔL(y) and ΔD(y) are calculated as

ΔL(y) =
1

Np
{
∑

e∈Ead

w(e)−
∑

e∈Ere

w(e)} (5)

ΔH(y) =∑
e∈Ead

{−(F (e) + 1)/Np log((F (e) + 1)/Np) + F (e)/Np log((F (e))/Np)}

+
∑

e∈Ere

{−(F (e)− 1)/Np log((F (e)− 1)/Np) + F (e)/Np log((F (e))/Np)} (6)

where w(e) is a weight (lenth) of an edge e.
After xi is replaced with x′

i, F (e) is updated by adding 1 to F (e) if e ∈ Ead,
and subtracting 1 from F (e) if e ∈ Ere. When EAX-1AB is used, |Ead| and
|Ere| are usually much smaller than N . Therefore, the computational cost of
calculating evalENT (y) is negligible compared with the EAX-1AB procedure.
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For example, the computational costs for calculating ΔH(y) is about 5 % in
pr2392 instance. Because the selection for survival in TDGA are not restricted
within a family , the computational cost of edge entropy becomes a bottleneck
where the fast algorithm for EAX-1AB is used.

4 Experiments

4.1 Comparisons with Selection Methods

We compare three evaluation methods, i.e., evalGreedy(y), evalLocalDis(y), and
evalENT (y) on Selection Model I where the fast algorithm for EAX-1AB is used.
Each method is denoted by EAX-1AB(Greedy), EAX-1AB(LocalDis), or EAX-
1AB(ENT) and applied to several TSP benchmarks [15]. No mutation is used in
order to focus on the evaluation methods.

Although EAX-1AB(Greedy) and EAX-1AB(LocalDis) used a population Np

of 300, EAX-1AB(ENT) used 200 because EAs using EAX-1AB(ENT) converge
slower than the others. Nch were set to 30. Fifty runs were executed for each
instances. When the individuals of a population become similar at the end of
evolution, the number of AB-cycles formed by the EAX algorithm are less than
Nch. Therefore, EAX-Rand with greedy selection (EAX-Rand (Greedy)) is used
after no improvements in the shortest tour length in the population are ob-
served over 30 generations in Selection Model I. If the shortest tour length in
the population stagnates over 50 generations, then terminate a run. In Step (1)
of Selection Model I, the initial population was generated by 2-opt local search
[1]. These algorithms were implemented in C++, and executed using a Xeon
3.06 GHz single processor with 2 GB RAM.

Table 2. Comparisons of performance of EAs using three selection methods. Column
headed ’opt.’ means number of trials that can reach optimal solutions. ’err.’ means
average excess from optimal tour length. ’gen.’ means average generation (loop from
Step (2) to (4) in Model I) required to reach best individual in each trial. ’time’ means
average execution time in seconds required for one run, where EAs were implemented
in C++ and executed on 3.06 GHz Xeon single processor.

opt. err.(%) gen. time(s) opt. err.(%) gen. time(s)opt. err.(%) gen. time(s)

   mv1084
  pcb1173
      u1432
   vm1748
     pr2392
  pcb3038
    fnl4461
      rl5915
usa13509

instance

  EAX-1AB(Greedy)
Np = 300, Nch = 30 

24     0.0083     49.3        28
37     0.0020     63.3        25
12     0.0283     81.8        59
18     0.0308     88.7        72
40     0.0015    117.1       93
  8     0.0077    182.8     224
  2     0.0065    341.2     874
  0     0.0091    138.3     475
  0     0.0112  1164.6   7766

47     0.0011     62.2          36 
49     0.0000     85.1          35 
26     0.0105   110.8          62
50     0.0000     96.7          91 
50     0.0000   164.2        123 
34     0.0013   262.1        288 
29     0.0013   535.3      1156
12     0.0037   184.9        692
  4     0.0015 1828.6    10534

50     0.0000      89.2         36 
50     0.0000    135.2         43 
35     0.0035    120.9         49
50     0.0000    153.4         90 
50     0.0000    260.1       121 
50     0.0000    398.3       287 
45     0.0001    786.5     1128
42     0.0014    326.6       608
  0     0.0021  2561.7   12999

   EAX-1AB(ENT)
Np = 200, Nch = 30 

 EAX-1AB(LocalDis)
Np = 300, Nch = 30 
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Table 2 lists the performance of the three methods. EAX-1AB(ENT) can
reach optimal solutions more frequently than EAX-1AB(LocalDis) while having
almost the same computational cost. However, the solution quality of usa13509
obtained by EAX-1AB(ENT) is worse than EAX-1AB(LocalDis). Especially,
EAX-1AB(LocalDis) found an optimal solution. We guess that the edge entropy
measure must be modified to address large size instances such as usa13509. EAX-
1AB(Greedy) is fastest but the quality of solutions is significantly worse than
the others, especially for large instances.

4.2 Comparisons with Other Optimization Methods

We compared EAX-1AB(ENT) with the heterogeneous selection evolutionary
algorithm (HeSEA) [12]. In our survey on the application of EAs to TSPs, one
of the best approaches was HeSEA. HeSEA is a hybrid that is constructed by in-
tegrating EAX and Chained Lin-Kernighan (CLK)[4]. We also considered other
state-of-the-art TSP heuristic algorithms for comparison. From the results ob-
tained by the “8-th DIMACS Implementation Challenge: The Traveling Sales-
man Problem” [2], we chose three representative methods that performed well.
Iterated Lin-Kernighan (ILK) [1] is a simple yet powerful improvement to LKLS.
Iterated local search of Chained Lin-Kernighan (CLK) [4] and Heslgaun’s (LKH)
[5] are known to be one of the most efficient approximation methods for TSPs.

EAX-1AB(ENT) was applied to 14 benchmarks [15] larger than 1000 cities
under the same conditions as in the previous subsection, where the population
was set 200 or 30. Fifty trials were executed for each instance. Table 3 lists
the results for EAX-1AB(ENT) and the compared methods. Data of HeSEA is
copied from [12], where twenty runs were executed for each instance. Data of ILK,
CLK, and LKH are copied form “8-th DIMACS Implementation Challenge” [2],
where only single run was executed for each instance. The err.(%) and time(s)
are the average excess from the optima and the average running time in seconds
for a run. The running times of EAX-1AB(ENT) and HeSEA are respectively
based on Xeon 3.06 GHz single processor and Pentium IV 1.2 GHz processor.
Running time for ILK, CLK and LKH are normalized running time on 500MHz
Alpha processor. In our guess, Xeon 3.06 GHz processor is 4–5 times faster than
500MHz Alpha processor.

We can see that running time of EAX-1AB(ENT) with a population of 200
is roughly the same as that of HeSEA when differences in the machines are
taken into consideration. Qualities of solutions are comparable. However, EAX-
1AB(ENT) sometimes fails to find optimal solutions for u1432 and u2152 in-
stances where cities are partially located within a reticular pattern. In this case,
EAs may not work well because there exist several optimal solutions and EAs
can not narrow the range of the promising search space.

EAX-1AB(ENT) with a population of 30 was compared to ILK, CLK, and
LKH, because the proposed method is much slower if population of 200 is used.
As we can see from the table, EAX-1AB(ENT) dominates ILK in some instances.
The solution qualities of EAX-1AB(ENT) are often better than those of CLK,
while running time of EAX-1AB(ENT) is larger than that of CLK, especially
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Table 3. Comparisons of performance of EAX-1AB(ENT), HeSEA, ILK, CKL and
LKH. The running times of EAX-1AB(ENT) and HeSEA are respectively based on
Xeon 3.06 GHz single processor and Pentium IV 1.2 GHz processor. Runing time of
ILK, CLK and LKH are normalized on 500MHz Alpha processor.

   mv1084
  pcb1173
      u1432
      d1655
   vm1748
      u2152
     pr2392
  pcb3038
    fnl4461
      rl5915
usa13509

0.0000        36 
0.0000        43 
0.0035        49
0.0008        61
0.0000        90 
0.0003        93
0.0000      121 
0.0000      287 
0.0001    1128
0.0014      608
0.0021  12999

0.02         4.2 
0.02         5.9 
0.12         7.0
0.08         8.0
0.04       13.5 
0.14       13.8
0.02       19.5 
0.04       44.7 
0.05     116.3
0.09       85.7
0.06   1645.2

0.02      156.6 
0.01        66.3
0.10        94.4
0.01      604.4
0.00      352.0
0.17      244.5
0.11      137.5 
0.12      257.0 
0.14      398.2
0.02    1160.7
0.16    4436.2

0.00       26.9 
0.16       19.7
0.23       30.6
0.38       27.6
0.05       51.5
0.29       28.1
0.42       47.7 
0.26       66.6 
0.15     129.0
0.54     192.5
0.20     967.0

0.07          9.8 
0.18          8.5
0.00        11.7
0.00          6.7
0.02        21.3
0.11        40.2
0.00        48.2 
0.03        84.2 
0.01      182.2
0.04      332.8
0.01    2631.1

     ILK
[JM-N-b10]

      CLK
[ABCC-10N]

        LKH
[Helsgaun-N/10]

0.0000         81
0.0000         85 
0.0000       107
         N/A              
0.0000       141
0.0000       211
0.0000       208 
0.0000       612 
0.0005     2349
0.0001     2773
0.0074   34984

HeSEA
  EAX-1AB(ENT)
[Np=200,Nch=30]

 EAX-1AB(ENT)
[Np=30,Nch=30]

err.(%) time(s) err.(%) time(s) err.(%) time(s) err.(%) time(s) err.(%) time(s) err.(%) time(s)

in large instances. Although EAX-1AB(ENT) is dominated by LKH in most
instances, the differences are not so large. As described in this comparisons,
EAX-1AB(ENT) is quite comparable to state-of-the-art TSP heuristics even
though it dose not use LKLS heuristics.

5 Conclusion

We proposed two ideas to improve the performances of EAs using EAX crossover.
First, we proposed the fast implementation of EAX-1AB crossover. The key idea
was that the change in edges caused by EAX would be localized, and the EAX al-
gorithm would then be locally executed. EAs using EAX-1AB could be executed
2–7 times faster than the original algorithm (Table 1). We then proposed a selec-
tion model that could maintain population diversity at negligible computational
cost. Here, edge entropy was used as an indicator of population diversity. The
proposed selection model utilized this explicitly to maintain population diversity.
Using this model, EAs with EAX-1AB could significantly improve the quality
of solutions without increasing the execution time (Table 2). The proposed EA
was called the EAX-1AB(ENT).

EA using EAX-1AB(ENT) was applied to several TSP benchmarks up to
instances of 13509 cities. It was compared to other state-of-the-art TSP heuristics
including HeSEA, ILK, CKL, and HLK. Those methods are all based on Lin-
Kernighan local search (LKLS). The experiments demonstrated that the EAX-
1AB(ENT) was quite comparable to these heuristics even thought it does not
utilize LKLS (Table 3).

However, the solution quality of usa13509 obtained by EAX-1AB(ENT) is
worth than EAX-1AB(LocalDisT). Especially, EAX-1AB(LocalDis) found an
optimal solution. In the future work, the edge entropy measure must be modified
to address large size instances.
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Abstract. As shown in recent researches, in a distribution system, ig-
noring routes when locating depots may overestimate the overall system
cost. The Location Routing Problem (LRP) overcomes this drawback
dealing simultaneously with location and routing decisions. This paper
presents a memetic algorithm with population management (MA|PM)
to solve the LRP with capacitated routes and depots. MA|PM is a very
recent form of memetic algorithm in which the diversity of a small popu-
lation of solutions is controlled by accepting a new solution if its distance
to the population exceeds a given threshold. The method is evaluated on
three sets of instances, and compared to other heuristics and a lower
bound. The preliminary results are quite promising since the MA|PM
already finds the best results on several instances.

1 Introduction

Depot location and vehicle routing are crucial choices to reduce the logistic costs
of companies, and often interdependent. Tackling separately these two levels
of decision may lead to suboptimization [19]. The Location Routing Problem,
LRP, appeared relatively recently in literature, is a combination of both levels.
Given customers with known demands and possible depot locations, it consists
of determining the depots to be opened and the vehicle routes connected to
these depots, in order to cover the demands at minimum cost (see Section 2 for
a formal definition).

As shown in [13], most early published papers consider either capacitated
routes or capacitated depots, but not both [6, 10, 21]. In general, the LRP is
formulated as a deterministic node routing problem (i.e., customers are located
on nodes of the network). However, a few authors have studied stochastic cases
[9, 5] and, more recently, arc routing versions [7, 8]. In the sequel, the case with
capacities on both depots and routes is called general LRP. Albareda-Sambola
et al. [1] proposed a two-phase Tabu Search (TS) heuristic for the LRP with
one single route per capacitated open depot, tested on small instances only
(at most 30 customers). Wu et al. [23] studied the general LRP with homoge-
neous or heterogeneous limited fleets. They divided the original problem into

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 183–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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two subproblems: a Location-Allocation Problem (LAP), and a Vehicle Routing
Problem (VRP). Each subproblem is solved in a sequential and iterative manner
by a Simulated Annealing (SA) algorithm with a tabu list to avoid cycling. An
iterative “location first - route second” heuristic for a three-level LRP (factories-
depots-customers) with capacity constraints on both depots and routes, and a
maximum duration per route, was developed by Bruns and Klose [4]. Tuzun and
Burke [22] developed another two-phase TS but for the LRP with capacitated
routes and uncapacitated depots. The two phases are also dedicated to routing
and location. The principle is to progressively increase the number of open de-
pots until this deteriorates the total cost. These authors report results for up
to 200 customers. Prins et al. have already developed two algorithms on the
general LRP. The first one, [16], is a GRASP (Greedy Randomized Adaptive
Search Procedure) with a memory on the depots used during a diversification
phase. This information guides the search on the most promising depots during
an intensification phase. The method is followed by a post-optimization based on
a path relinking algorithm. The second one, [17], is a cooperative metaheuristic
which alternates between a depot location phase and a routing phase, sharing
some information. In the location phase, the routes are aggregated into super-
customers to give a facility location problem solved by a Lagrangean relaxation
of the assignment constraints. In the routing phase, the routes from the resulting
multi-depot VRP are improved using a Granular Tabu Search (GTS). Barreto
[3] developed a family of three-phase heuristics based on clustering techniques.
Clusters of customers fitting vehicle capacity are formed in the first phase. A
TSP is solved for each cluster in the second phase. Finally, in the third phase, the
depots to open are determined by solving a facility location problem, in which
the TSP cycles are aggregated into supernodes. Barreto also proposed a lower
bound which is reached by the best heuristics on some small scale instances.

This paper deals with the general LRP with fixed costs to open a depot or
a route. The objective is to determine the set of depots to open and the routes
originating from each open depot, in order to minimize a total cost compris-
ing the setup costs of depots and routes and the total cost of the routes. The
proposed solution method, MA|PM, is a memetic algorithm (genetic algorithm
hybridized with a local search procedure) with a population management tech-
nique based on a distance measure in the solution space. This last tool permits to
control the diversity of a small population of good quality solutions. The paper
is organized as follows. Section 2 defines the problem. The principle of MA|PM
and how it is applied to the LRP is given in Section 3. Section 4 provides the
global algorithm and the parameter used. To evaluate the first performances of
the method, computational experiments are presented in Section 5 with some
concluding remarks to close the paper.

2 Problem Definition

This paper deals with the general LRP with fixed costs to open a route or a
depot. The data are based on a complete, weighted and undirected network
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G = (V,E,C). V is a set of nodes comprising a subset I of m possible depot
locations and a subset J = V \I of n customers. The travelling cost between
any two nodes i and j is given by Cij . A capacity Wi and an opening cost Oi

are associated to each depot site i ∈ I. Each customer j ∈ J has a demand dj .
Identical vehicles of capacity Q are available. When used, each vehicle incurs a
fixed cost F and performs one single route. The total number of vehicles used
(or routes performed) is a decision variable.

The following constraints must hold:

– each demand dj must be served by one single vehicle;
– each route must begin and end at the same depot and its total load must

not exceed vehicle capacity;
– the total load of the routes assigned to a depot must fit the capacity of that

depot.

The total cost of a route includes the fixed cost F and the costs of traversed
edges. The objective is to find which depots should be opened and which routes
should be constructed, in order to minimize the total cost (fixed costs of depots,
plus total cost of the routes).

The LRP is obviously NP -hard since when m = 1, it reduces to the Vehicle
Routing Problem (VRP), known to be NP -hard. It is even much more combina-
torial than the VRP: in addition to the partition of customers into routes and the
sequencing of each route, it involves the selection of open depots and the assign-
ment of routes to these depots. Therefore only very small instances can be solved
to optimality. A first non-trivial bound for the LRP with capacitated routes and
depots has been proposed only recently [3] but it is too time-consuming beyond
50 customers.

3 MA|PM for the LRP

Evolutionary algorithms have been successfully applied to vehicle routing prob-
lems, especially the genetic algorithms hybridized with local search, also called
memetic algorithms (MA), [11, 14]. Very recently, Sörensen and Sevaux [20] have
proposed a new form called MA|PM or memetic algorithm with population man-
agement. MA|PM is characterized by a small population P , the improvement of
new solutions by local search, and the replacement of the traditional mutation
operator by a dynamic distance-based population management technique. Given
a threshold Δ, a new solution is accepted only if its distance to P is at least
Δ. Otherwise, Sörensen and Sevaux proposed two options: either the offspring is
mutated until its distance to P reaches the threshold, or it is simply discarded.
These authors described also several dynamic control policies for Δ.

MA|PM has already been applied to the Capacitated Arc Routing Problem
[18]. The results indicate that it converges faster than conventional memetic
algorithms. Moreover, its general structure is simpler than other distance-based
population metaheuristics such as scatter search or path relinking, and it is quite
easy to upgrade an existing MA into an MA|PM.
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The choice of MA|PM for the LRP has been inspired by these promising char-
acteristics. The version studied here corresponds to the second option: children
that do not match the threshold are simply discarded. Section 3.1 presents the
structure of the chromosomes used, Section 3.2 explains the crossover phase,
while Sections 3.3 and 3.4 respectively develop the local search and the popula-
tion management technique.

3.1 Chromosomes and Evaluation

Defining a suitable chromosome encoding for the LRP is not trivial. Information
about the depots, the assignment of customers and the order of deliveries to these
customers has to be stored inside the chromosome. Moreover, it is important to
design fixed length chromosomes because they are required by most crossovers
and distance measures.

The adopted chromosome encoding comprises a depot status part DS and a
customer sequence part CS (see Figure 1).

index 1 2 3 4 … m 1 2 3 4 12 13 14 17 18 n

value 13 0 1 18 0 8 20 15 16 18 2 10 4 22 17

… … …

closed depot

open depot - sequence of
assigned customers begins at
position 13

sequence of customers
assigned to depot 1, cut
into routes by the Split
procedure

DS CS

Fig. 1. Representation of an LRP solution as a chromosome

DS (depot status) is a vector of m numbers. DS(i) represents the status of
depot i indicating whether it is closed (zero) or opened (non-zero value). If it
is opened, DS(i) is the index in CS of the first customer assigned to depot i.
CS (customers sequence) contains the concatenation of the lists of customers
assigned to the opened depots, without trip delimiters. So, CS is a permutation
of customers and has a fixed length.

The fitness F (S) of a chromosome S is the total cost of the associated LRP
solution. DS is used to deduce the cost of open depots and the list of customers
assigned to each depot. Each such list can be optimally partitioned into trips
using a procedure called Split. This procedure was originally developed by Prins
for the VRP [14]. For a list of p customers, it builds an auxiliary graph H =
(X, A, Z), where X contains p + 1 nodes indexed from 0 to p, A contains one
arc (i, j), i < j, if a trip servicing customer Si+1 to Sj (included) is feasible in
terms of capacity. The weight zij of (i, j) is equal to the trip cost. The optimal
splitting of the list corresponds to a min-cost path from node 0 to node p in H.
For the LRP, we apply Split to the list of customers of each depot.
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3.2 Selection of Parents and Crossover

To generate an offspring, the first step is to select its parents. The first one comes
from a binary tournament among the β best solutions of the population, and the
second one from a binary tournament on the whole population except the first
selected parent. Then, basically, for two parents A and B, a one-point crossover
is applied to the DS vectors of the two parents and another one to their CS
vectors. The crossover for DS works like for binary chromosomes. The one for
CS is adapted for permutations. The offspring C receives the sub-sequence of A
located before the cutting point. B is then scanned from left to right, starting
from the cutting point. The customers not yet in C are copied in CS at the same
position as in B to complete the offspring. Once arrived at the end of B, if there
are still some vacant positions in CS, they are filled by non-inserted customers.

Infeasible chromosome:

index: 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

value: 3 0 1 8 0 3 4 2 5 8 7 6 9 1 10

Capacity violation

Chromosome after repair:

index: 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10

value: 4 0 1 8 0 6 3 4 2 5 8 7 9 1 10

DS CS

DS CS

Customers
assigned
to depot 3

Customers
assigned
to depot 1

Customers
assigned
to depot 4

Customers
assigned
to depot 3

Customers
assigned
to depot 1

Customers
assigned
to depot 4

Fig. 2. Example of a repair

This operator may provide a chromosome corresponding to an infeasible so-
lution, especially because of the capacity constraints on the depots. Thus, each
child is tested and repaired in case of infeasibility (see figure 2). First of all,
the repairing procedure checks if all the customers are assigned to a depot by
verifying that the index 1 of CS is in DS. It means that in the worst case,
all the customers are assigned to a single depot. Otherwise, the first closed de-
pot i found is opened and DS(i) = 1. Then, the procedure looks for depots
having a capacity violation. If one depot is found, that means that too much
customers are assigned to it. Therefore, the algorithm scans backward the se-
quence of customers assigned to such a depot and removes them one by one until
the capacity constraint of the depot holds. Removed customers are assigned to
the first opened depot found having enough remaining capacity. If none exists,
the closest depot is opened.
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The offspring, if accepted by the population management system described
in Section 3.4, replaces the worst chromosome in the population.

3.3 Local Search Procedures

MA|PM works on a small population of high-quality solutions [20]. This quality
results from the application of a local search procedure. For the LRP, the off-
spring undergoes a local search LS1 based on the three following neighborhoods:

– MOVE. One customer is shifted from its current position to another position,
in the same route or in a different route which may be assigned to the same
depot or not, provided capacities are respected.

– SWAP. Two customers are exchanged. They may belong to the same route
or, if residual capacities allow it, to two distinct routes sharing one common
depot or not.

– OPT. This is a 2-opt procedure we proposed in [16] and in which two non-
consecutive edges are removed, either in the same route or in two distinct
routes assigned to a common depot or not. When they belong to different
routes, there are various ways of reconnecting the trips. If they are from
different depots, edges connecting the last customers of the two considered
routes to their depot have to be replaced to satisfy the constraint imposing
that a route must begin and finish at the same depot. This neighborhood is
equivalent in the first case to the well-known 2-OPT move for the TSP [12].

LS1 must not be called systematically, to avoid a premature convergence and
also because it is time-consuming with its O(n2) neighborhoods. In practice, it is
applied to the offspring with a fixed probability p1. Otherwise, a ”light” version
LS2 is executed with a given probability p2. LS2 is identical to LS1, except that
the moves involving two trips from two different depots are not evaluated.

Both LS1 and LS2 execute the first improving move found in the three neigh-
bourhoods (not the best move) and stop when no such move can be found. Note
that a depot can only be opened by the crossover and not by these procedures.

3.4 Population Management

The population management controls population diversity by filtering the off-
spring thanks to a distance measure in the solution space. Let D(T,U) be the
distance between two solutions T and U (chromosomes after the evaluation by
Split). It can be defined as follows. For each pair (i, j) of consecutive customers
in T , four cases are considered:

– the pair (i, j) or (j, i) is found in U , so the pair is not broken, and does not
contribute to the distance measure;

– i and j are no longer adjacent in U , but they are in a common trip: count 1
in the distance;

– i and j are in different trips in U , but assigned to one common depot: count 3;
– i and j are assigned to two different depots in U : count 10.
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Moreover, for each customer i serviced at the beginning of a trip in T , count
10 if i is assigned to another depot in U .

This measure is not exactly a distance in the mathematical sense, because
the triangle inequality does not hold. However, note that D(T,U) ≥ 0 and
T = U ⇐⇒ D(T,U) = 0. Moreover, this distance measure correctly detects
equivalent solutions, e.g. when the trips are renumbered or when some of them
are inverted (performed backward by the vehicle).

The distance of a solution T to the current population P is defined by:

dP (T ) = min
U∈P

D(T,U) (1)

In MA|PM, a new solution T may enter the population only if dP (T ) ≥ Δ,
where Δ is a given threshold. If Δ = 0, the algorithm behaves like a traditional
MA. Δ ≥ 1 ensures distinct solutions in P (note that the distance is integer). If
Δ takes a large value, most children-solutions are rejected and the MA spends
too much time in unproductive iterations. Δ can be dynamically adjusted be-
tween such extremes to control population diversity. Different control policies
are suggested in [20]. In our MA|PM, Δ is initialized to a rather high value
Δmax. If a series of MaxNbRej successive rejections of the offsprings is reached,
Δ decreases until accepting a new offspring in the population, but keeping the
minimum value of Δ equal to 1. Then, Δ remains constant until a new series of
successive rejections occurs. If a new best solution is found, Δ is reset to Δmax.

4 Algorithm and Parameters

4.1 General Structure

The algorithm begins by creating a population of NbIndiv good solutions using
two different randomized heuristics. The first half of the population comes from
a randomized constructive heuristic based on the Nearest Neighbor Algorithm,
followed by the local search LS1. The second half of the population comes from
a greedy randomized heuristic based on an extended Clarke and Wright saving
algorithm (ECWA) for the LRP [16], followed by LS1. All these initial solutions
are distinct (Δ = 1).

Periodically, the population undergoes a partial replacement of its solutions.
This refreshment of the population occurs when a given number MaxNbNoAdd
of rejected offsprings has been reached. Every individual except the best one
(having the best fitness) is replaced in the population. The algorithm stops
when a given number MaxNbAcc of accepted offsprings has been generated. An
overview of the pseudocode of MA|PM for the LRP is given Algorithm 1..

The variable BestCost, Cost(C), NbAcc, NbRej, NbNoAdd respectively refers
to the cost of the best solution found, the cost of the current offspring, the
counter of accepted offsprings during the algorithm, the counter of successive
iterations without improvement of the best solution, the counter of successive
iterations without acceptation of offspring in the population and the counter of
rejected offsprings in a population.
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Algorithm 1. Overview of the algorithm
1: BestCost := +∞
2: NbAcc := 0
3: NbRej := 0
4: Δ := Δmax

5: GenPop(P)
6: //Main loop
7: repeat
8: //Second loop
9: repeat

10: Selection(A,B)
11: Crossover(A,B,C)
12: if (random < P1) then
13: LS1(C)
14: else
15: if (random < P2) then
16: LS2(C)
17: end if
18: end if
19: if (cost(C) < BestCost) then
20: Δ := Δmax

21: BestCost := cost(C)
22: BestSoln := C
23: end if
24: if (dP (C) < Δ) then
25: NbRej := NbRej + 1
26: NbNoAdd := NbNoAdd + 1
27: else
28: NbRej:= 0
29: NbAcc := NbAcc +1
30: AddInPop(C)
31: end if
32: if (NbRej > MaxNbRej) then
33: Δ := Max(1,Δ − 1)
34: end if
35: until (NbNoAdd > MaxNbNoAdd and NbAcc > MaxNbAcc)
36: Δ := Δmax

37: NbNoAdd := 0
38: GenPop2(P,BestSoln)
39: until (NbAcc > MaxNbAcc)
40: Return (BestSoln)

The function GenPop, Selection, Crossover, AddInPop, GenPop and Return
respectively generates a population, selects the parents, creates a feasible off-
spring, replaces the worst individual in the population by an accepted offspring,
refreshes the population and returns the best solution found. LS1, LS2 refer to
the local searches.
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4.2 Parameters

After a preliminary testing phase on the instances, the parameters used in this
metaheuristic are set to the values provided in Table 1.

Table 1. Parameters of MA|PM for the LRP

Parameter Value Parameter Value
NbIndiv 
((n + m)/5) + 1� β NbIndiv · 1/3

MaxNbAcc (n + m) · 10 Δmax 
(n + m)/10) + 10�
MaxNbNoAdd 
(n + m) · 2.5� p1 0.5

MaxNbRej NbIndiv p2 0.7

5 Results

MA|PM for the LRP is evaluated on three sets of randomly generated Euclidean
instances briefly described in subsection 5.1. Tables of results are provided and
commented in subsection 5.2. Some remarks close the paper in subsection 5.3.

5.1 Instances

The first set contains 30 LRP instances with capacitated routes and depots,
elaborated for a previous work on a multi-start local search method (MSLS) [15],
and used for a GRASP [16] and LRGTS [17]. It contains the largest instances
with capacitated depots (200 customers). The second set comprises 36 instances
with uncapacitated depots used by Tuzun and Burke [22] to evaluate a tabu
search and in which n ∈ {100, 150, 200}, m ∈ {10, 20}. The third set of 13
instances was gathered by Barreto in his recent thesis on clustering heuristics for
the LRP [3]. It may be downloaded at [2]. These files either come from the LRP
literature or are obtained by adding several depots to classical VRP instances.
The algorithm is coded in Visual C++ and tested on a Dell PC Optiplex GX260,
with a 2.4 GHz Pentium 4, 512 MB of RAM and Windows XP. Here the results
are not given for each instance but on average by instances size.

5.2 Commented Results

Contrary to classical GAs, the results of a memetic algorithm are very robust, i.e.
they are only slightly affected by the random number generator used. This can
be explained by the local search, which converts the offspring into local optima.
This is why the results reported come from one single run. On the Tables, the
Gap columns indicate the deviations in % to MA|PM taken as reference. Hence,
the negative gaps correspond to improvements compared to MA|PM.

Table 2 provides a comparison between MA|PM and three other methods
MSLS [15], GRASP [16] and LRGTS [17] on the 30 instances initially designed for
MSLS. MSLS [15] is basically a multi-start local search algorithm that uses some
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Table 2. Results for the first set with capacitated depots

MA | PM LRGTS GRASP MSLS
n m Cost CPU Cost CPU Gap Cost CPU Gap Cost CPU Gap

20 5 45087 0 45104 0 0.0 45144 0 0.1 45530 0 0.9
50 5 74188 3 74515 1 0.4 74701 2 0.7 79077 2 6.2

100 5 201094 32 200544 5 -0.1 202210 22 0.7 203548 27 1.3
100 10 249248 29 241178 13 -2.7 257048 35 3.2 267780 51 8.0
200 10 422228 308 423046 73 0.2 447657 422 6.1 487236 744 15.0
Average -0.4 2.2 6.6

Table 3. Results for the third set with uncapacitated depots

MA | PM LRGTS GRASP TS
n m Cost CPU Cost CPU Gap Cost CPU Gap Cost CPU Gap

100 10 1174.3 34 1179.1 7 0.6 1191.4 23 1.5 1215.7 4 3.5
100 20 1180.7 42 1185.0 7 0.5 1196.0 35 1.3 1205.4 3 2.0
150 10 1587.2 138 1600.4 24 1.0 1625.0 92 2.4 1639.6 11 3.5
150 20 1453.2 167 1449.6 25 -0.1 1466.6 127 1.1 1474.3 11 1.6
200 10 1983.0 375 1987.7 65 0.3 2020.7 232 1.9 2051.6 21 3.7
200 20 1814.7 422 1783.1 73 -1.3 1839.3 337 1.4 1814.1 20 0.3
Average 0.2 1.6 2.4

randomness in its search. It is the slowest method (164.9 seconds on average) and,
in spite of 2 best solutions (also found by other algorithms), it displays an average
deviation of 6.6% to MA|PM. The relative slowness can be explained by the
time-consuming look-ahead process used to try closing some depots. The other
heuristics are faster and also more efficient than MSLS. Thanks to the granularity
system, LRGTS is by far the fastest method, nearly 5 and 4 times respectively
faster than GRASP and MA|PM, and 9 times faster than MSLS, while finding
the best solution for 11 out of the 30 instances. Its better average solution quality
can be explained by the cooperation between the location and routing phases.
Nevertheless, MA|PM outperforms GRASP and is able to compete with LRGTS
on many instances. It even outperforms LRGTS on 16 instances. In fact, LRGTS
does slightly better on average (-0.4%) mainly because it saves 9% on two very
hard instances, for which MA|PM is not so good. Without these two instances,
the ranking would be inverted and LRGTS would be at 0.2% to MA|PM. Table 3
provides a comparison between MA|PM and GRASP [16], LRGTS [17] and TS
[22] on the second set of instances. MA|PM becomes the method providing the
best results on average. It also seems more effective than LRGTS on small and
medium size instances, especially with uncapacitated depots, while LRGTS is
still superior on most of the largest instances.

Finally, due to lack of room, results for the third set of instances are not
reported in a Table. We have compared Barreto’s clustering heuristic CH [3],
GRASP [16], LRGTS [17] and MA|PM with the lower bound provided by Barreto
[3], and they are respectively at 5.3%, 3.3%, 3.6% and 3.7% to this bound.
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GRASP, LRGTS and MA|PM are here almost as good as each other, with a
little advantage to GRASP.

5.3 Conclusion

In this paper, a new metaheuristic for the Location Routing Problem (LRP) with
both capacitated depots and vehicles is presented. The method is an evolutionary
algorithm called memetic algorithm with population management (MA|PM).
It is a genetic method hybridized with local search techniques and a distance
measure permitting to control the diversification of the solutions. The method
is not yet definitively tuned but it has been already tested on three sets of
small, medium and large scale instances with up to 200 customers, and compared
to other heuristics and a lower bound. The solutions obtained show that this
algorithm is promising as it already outperforms other metaheuristics except
one and is able to find good quality solutions on various kinds of instances.
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Abstract. We present the newly developed core concept for the Mul-
tidimensional Knapsack Problem (MKP) which is an extension of the
classical concept for the one-dimensional case. The core for the mul-
tidimensional problem is defined in dependence of a chosen efficiency
function of the items, since no single obvious efficiency measure is avail-
able for MKP. An empirical study on the cores of widely-used benchmark
instances is presented, as well as experiments with different approximate
core sizes. Furthermore we describe a memetic algorithm and a relaxation
guided variable neighborhood search for the MKP, which are applied to
the original and to the core problems. The experimental results show that
given a fixed run-time, the different metaheuristics as well as a general
purpose integer linear programming solver yield better solution when
applied to approximate core problems of fixed size.

1 Introduction

The Multidimensional Knapsack Problem (MKP) is a well-studied, strongly NP-
hard combinatorial optimization problem occurring in many different applica-
tions. It can be defined by the following ILP:

(MKP) maximize z =
n∑

j=1

pjxj (1)

subject to
n∑

j=1

wijxj ≤ ci, i = 1, . . . , m (2)

xj ∈ {0, 1}, j = 1, . . . , n. (3)

Given are n items with profits pj > 0 and m resources with capacities ci > 0.
Each item j consumes an amount wij ≥ 0 from each resource i. The goal is to
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select a subset of items with maximum total profit, see (1); chosen items must,
however, not exceed resource capacities, see (2). The 0–1 decision variables xj

indicate which items are selected.
A comprehensive overview on practical and theoretical results for the MKP

can be found in the monograph on knapsack problems by Kellerer et al. [8].
Besides exact techniques for solving small to moderately sized instances, see [8],
many kinds of metaheuristics have already been applied to the MKP. To our
knowledge, the method currently yielding the best results, at least for commonly
used benchmark instances, was described by Vasquez and Hao [18] and has
recently been refined by Vasquez and Vimont [19]. Various other metaheuristics
have been described for the MKP [5, 3], including several variants of hybrid
evolutionary algorithms (EAs); see [16] for a survey and comparison of EAs for
the MKP.

We first introduce the core concept for KP, and then expand it to MKP with
respect to different efficiency measures. We then give some results of an empirical
study of the cores of widely-used benchmark instances and present the applica-
tion of the general ILP-solver CPLEX to MKP cores of fixed sizes. Furthermore
we present a Memetic Algorithm (MA) and a Relaxation Guided Variable Neigh-
borhood Search (RGVNS) applied to cores of hard to solve benchmark instances.
We finally conclude by summarizing our work.

2 The Core Concept

The core concept was first presented for the classical 0/1-knapsack problem [1],
which led to very successful KP algorithms [9, 11, 12]. The main idea is to reduce
the original problem by only considering a core of items for which it is hard to
decide if they will occur in an optimal solution or not, whereas the variables for
all items outside the core are fixed to certain values.

2.1 The Core Concept for KP

The one-dimensional 0/1-knapsack problem (KP) considers items j = 1, . . . , n,
associated profits pj , and weights wj . A subset of these items has to be selected
and packed into a knapsack having a capacity c. The total profit of the items
in the knapsack has to be maximized, while the total weight is not allowed to
exceed c. Obviously, KP is the special case of MKP with m = 1.

If the items are sorted according to decreasing efficiency values

ej =
pj

wj
, (4)

it is well known that the solution of the LP-relaxation consists in general of
three consecutive parts: The first part contains variables set to 1, the second
part consists of at most one split item s, whose corresponding LP-values is
fractional, and finally the remaining variables, which are always set to zero,
form the third part. For most instances of KP (except those with a very special



The Core Concept for the Multidimensional Knapsack Problem 197

structure of profits and weights) the integer optimal solution closely corresponds
to this partitioning in the sense that it contains most of the highly efficient
items of the first part, some items with medium efficiencies near the split item,
and almost no items with low efficiencies from the third part. Items of medium
efficiency constitute the so called core.

Balas and Zemel [1] gave the following precise definition of the core of a
one-dimensional 0/1-knapsack problem, based on the knowledge of an optimal
integer solution x∗. Assume that the items are sorted according to decreasing
efficiencies and let

a := min{j | x∗
j = 0}, b := max{j | x∗

j = 1}. (5)

The core is given by the items in the interval C = {a, . . . , b}. It is obvious that
the split item is always part of the core.

The KP Core (KPC) problem is defined as

(KPC) maximize z =
∑
j∈C

pjxj + p̃ (6)

subject to
∑
j∈C

wjxj ≤ c− w̃, (7)

xj ∈ {0, 1}, j ∈ C, (8)

with p̃ =
∑a−1

j=1 pj and w̃ =
∑a−1

j=1 wj . The solution of KPC would suffice to
compute the optimal solution of KP, which, however, has to be already partially
known to determine C. Pisinger [12] reported experimental investigations of the
exact core size. He moreover studied the hardness of core problems, giving also
a model for their expected hardness in [13].

The first class of core algorithms is based on solving a core problem with an
approximate core of fixed size c = {s − δ, . . . , s + δ} with various choices of δ,
e.g. with δ being a constant or δ =

√
n. An example is the MT2 algorithm by

Martello and Toth [9].
Since it is impossible to estimate the core size in advance, Pisinger proposed

two expanding core algorithms. Expknap [11] uses branch and bound for enu-
meration, whereas Minknap [12] (which enumerates at most the smallest sym-
metrical core) uses dynamic programming. For more details on core algorithms
for KP we refer to Kellerer et al. [8].

2.2 The Core Concept for MKP

The previous definition of the core for KP can be expanded to MKP without
major difficulties. The main problem, however, lies in the fact that there is no
obvious efficiency measure.

Efficiency Measures for MKP. Consider the most obvious form of efficiency
for the MKP which is a direct generalization of the one-dimensional case:

ej(simple) =
pj∑m

i=1 wij
. (9)
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Different orders of magnitude of the constraints are not considered and a
single constraint may dominate the others. This drawback can easily be avoided
by scaling:

ej(scaled) =
pj∑m

i=1
wij

ci

. (10)

Taking into account the relative contribution of the constraints Senju and
Toyoda [17] get:

ej(st) =
pj∑m

i=1 wij(
∑n

j=1 wij − ci)
. (11)

For more details on efficiency values we refer to Kellerer et al. [8] where a
general form of efficiency is defined by introducing relevance values ri for every
constraint:

ej(general) =
pj∑m

i=1 riwij
. (12)

The relevance values ri can also be seen as kind of surrogate multipliers. Pirkul
calculates good multipliers heuristically [10]. Fréville and Plateau [4] suggested
setting

ri =

∑n
j=1 wij − ci∑n

j=1 wij
, (13)

giving the efficiency value ej(fp). Setting the relevance values ri to the values
of an optimal solution to the dual problem of the MKP’s LP-relaxation was a
successful choice in [3], yielding the efficiency value ej(duals).

The MKP Core. Since there are several possibilities of defining efficiency
measures for MKP, the core and the core problem have to be defined depending
on a specific efficiency measure e. Let x∗ be an optimal solution and assume that
the items are sorted according to decreasing efficiency e, then let

ae := min{j | x∗
j = 0}, be := max{j | x∗

j = 1}. (14)

The core is given by the items in the interval Ce := {ae, . . . , be}, and the core
problem is defined as

(MKPCe) maximize z =
∑
j∈C

pjxj + p̃ (15)

subject to
∑
j∈C

wijxj ≤ ci − w̃i, i = 1, . . . , m (16)

xj ∈ {0, 1}, j ∈ C, (17)

with p̃ =
∑a−1

j=1 pj and w̃i =
∑a−1

j=1 wij , i = 1, . . . , m.
In contrast to KP, the solution of the LP-relaxation of MKP in general does

not consist of a single fractional split item. But up to m fractional values give
rise to a whole split interval Se := {se, . . . , te}, where se and te are the first and
the last index of variables with fractional values after sorting by efficiency e.
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Note that depending on the choice of the efficiency measure, the split interval
can also contain variables with integer values. Moreover, the sets Se and Ce

can have almost any relation to each other, from inclusion to disjointness. For
a “reasonable” choice of e, we expected them, however, to overlap to a large
extent.

If the dual solution values of the LP-relaxation are taken as relevance values,
the split interval Se resulting from the corresponding efficiency values ej(duals)
can be precisely characterized. Let xLP be the optimal solution of the LP-
relaxation of MKP.

Theorem 1.

xLP
j =

⎧⎪⎨
⎪⎩

1 if ej > 1 ,

∈ [0, 1] if ej = 1 ,

0 if ej < 1 .

(18)

Proof. The dual LP associated with the LP-relaxation of MKP is given by

(D(MKP)) minimize
m∑

i=1

ciui +
n∑

j=1

vj (19)

subject to
m∑

i=1

wijui + vj ≥ pj , j = 1, . . . , n (20)

ui, vj ≥ 0, i = 1, . . . , m, j = 1, . . . , n, (21)

where ui are the dual variables corresponding to the capacity constraints (2) and
vj correspond to the inequalities xj ≤ 1. For the optimal primal and dual solu-
tions the following complementary slackness conditions hold (see any textbook
on linear programming, e.g. [2]):

xj

(
m∑

i=1

wijui + vj − pj

)
= 0 (22)

vj(xj − 1) = 0 (23)

Recall that ej(duals) = pj
m
i=1 uiwij

. Hence, ej > 1 implies pj >
∑m

i=1 wijui,
which means that (20) can only be fulfilled by vj > 0. Now, (23) immediately
yields xj = 1, which proves the first part of the theorem.

If ej < 1, there is pj <
∑m

i=1 wijui which together with vj ≥ 0 makes the
second factor of (22) strictly positive and requires xj = 0. This proves the
theorem since nothing has to be shown for ej = 1.  !
It follows from Theorem 1 that Se ⊆ {j | ej = 1, j = 1, . . . , n}. It should
be noted that the theorem gives only a structural result which does not yield
any direct algorithmic advantage to compute the primal solution xLP since it
requires knowing the dual optimal solution.
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3 Experimental Study of MKP Cores and Core Sizes

3.1 MKP Cores and Efficiency Measures

In order to analyze the core sizes in dependence on different efficiency values,
we performed an empirical in-depth examination on smaller instances of Chu
and Beasley’s benchmark library1. Chu and Beasley [3] generated the instances
as suggested by Fréville and Plateau [4]. The instance classes consist of ten
instances each with n ∈ {100, 250, 500} items, m ∈ {5, 10, 30} constraints, and
tightness ratios α = ci/

∑n
j=1 wij , α ∈ {0.25, 0.5, 0.75}.

For the empirical results presented in this section, we used the smaller in-
stances, which could be solved to proven optimality in reasonable time using the
ILP-solver CPLEX, with n = 100 and m ∈ {5, 10}, and n = 250 and m = 5.

In Table 1 we examine cores devised using the scaled efficiency e(scaled), the
efficiency e(st), the efficiency e(fp) as defined in equations (12) and (13), and
finally the efficiency e(duals) setting the relevance values ri of equation (12) to

Table 1. Split intervals, core sizes and their mutual coverages and distances for differ-
ent efficiency values (average percent values taken from 10 instances and average over
all problem classes)

e(scaled) e(st)
n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 23.40 30.50 72.69 94.71 4.05 27.20 30.20 78.85 88.11 4.80
0.5 29.50 37.60 71.93 88.45 5.95 27.00 35.60 69.88 89.01 5.90
0.75 24.30 27.00 72.61 83.13 5.05 22.80 25.20 77.72 84.08 4.30

250 5 0.25 17.44 22.40 77.20 97.38 1.88 17.12 22.20 76.91 94.62 2.46
0.5 22.88 29.44 71.71 94.25 3.44 23.76 30.88 74.95 94.69 4.04
0.75 11.44 17.84 56.14 88.45 4.60 11.96 16.64 63.82 85.86 3.62

100 10 0.25 42.60 38.30 92.62 84.39 4.35 43.30 38.20 88.78 79.36 5.55
0.5 39.40 45.20 80.80 91.20 5.30 44.40 46.50 85.43 88.49 5.65
0.75 37.50 34.80 94.29 86.42 2.55 38.60 36.20 93.04 87.16 2.10

Average 27.61 31.45 76.67 89.82 4.13 28.46 31.29 78.82 87.93 4.27
e(fp) e(duals)

n m α |Se| |Ce| ScC CcS Cdist |Se| |Ce| ScC CcS Cdist

100 5 0.25 24.70 30.10 75.50 91.94 4.20 5.00 20.20 28.12 100.00 3.30
0.5 27.10 35.80 70.36 89.74 6.35 5.00 22.10 27.49 100.00 3.45
0.75 23.20 26.10 74.47 84.22 4.55 5.00 19.60 26.95 100.00 3.20

250 5 0.25 16.92 21.72 76.87 95.63 2.24 2.00 12.68 18.16 100.00 2.46
0.5 22.96 29.68 74.79 95.02 3.56 2.00 12.20 18.45 100.00 1.38
0.75 11.40 17.12 59.00 87.27 4.06 2.00 10.40 20.18 100.00 1.56

100 10 0.25 42.10 38.20 90.41 83.74 4.75 10.00 23.20 46.57 100.00 2.90
0.5 41.90 45.60 84.52 90.85 5.15 9.80 25.70 48.17 95.00 3.15
0.75 37.90 35.30 94.55 86.96 2.40 9.70 18.80 55.74 99.00 2.75

Average 27.58 31.07 77.83 89.49 4.14 5.61 18.32 32.20 99.33 2.68

1 http://people.brunel.ac.uk/∼mastjjb/jeb/info.html
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the optimal dual variable values of the MKP’s LP-relaxation. Listed are average
values of the sizes (in percent of the number of items) of the split interval (|Se|)
and of the exact core (|Ce|), the percentage of how much the split interval covers
the core (ScC) and how much the core covers the split interval (CcS), and the
distance (in percent of the number of items) between the center of the split
interval and the center of the core (Cdist).

As expected from Theorem 1, the smallest split intervals, consisting of the
fractional variables only are derived with e(duals). They further yield the small-
est cores. Using one of the other efficiency measures results in significantly larger
split intervals and cores. Furthermore, the smallest distances between the centers
of the split intervals and the cores are produced by e(duals) for almost all the
subclasses. The most promising information for devising approximate cores are
therefore available from the split intervals generated with e(duals), on which we
will concentrate our further investigations.

3.2 A Fixed Core Approach

In order to evaluate the influence of core sizes on solution quality and run-times,
we propose a fixed core size algorithm, where we solve approximate cores using

Table 2. Solving cores of different sizes exactly (average over 10 instances and average
over all problem classes)

n m α no core δ = 0.1n δ = 0.15n

z t[s] %opt # %t %opt # %t

100 5 0.25 24197 21 0.097 5 1 0.034 7 9
0.5 43253 27 0.053 4 1 0.018 6 6
0.75 60471 6 0.038 5 4 0.021 7 17

250 5 0.25 60414 1474 0.008 7 36 0.003 9 81
0.5 109293 1767 0.002 8 21 0.000 10 63
0.75 151560 817 0.000 10 17 0.000 10 47

100 10 0.25 22602 189 0.473 1 0 0.152 4 1
0.5 42661 97 0.234 3 0 0.084 5 1
0.75 59556 29 0.036 6 0 0.015 8 3

Average 63778 492 0.105 5.4 9 0.036 7.3 25
n m α δ = 0.2n δ = 2m + 0.1n δ = 2m + 0.2n

%opt # %t %opt # %t %opt # %t

100 5 0.25 0.015 9 32 0.015 9 32 0.000 10 62
0.5 0.002 9 24 0.002 9 24 0.002 9 64
0.75 0.001 9 39 0.001 9 39 0.000 10 61

250 5 0.25 0.000 10 82 0.003 9 69 0.000 10 91
0.5 0.000 10 67 0.000 10 59 0.000 10 73
0.75 0.000 10 72 0.000 10 40 0.000 10 61

100 10 0.25 0.002 9 10 0.000 10 46 0.000 10 66
0.5 0.030 8 13 0.022 8 60 0.000 10 75
0.75 0.011 9 22 0.000 10 54 0.000 10 70

Average 0.007 9.2 40 0.005 9.3 47 0.000 9.9 69
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the general purpose ILP-solver CPLEX 9.0. We performed the experiments on
a 2.4 GHz Pentium 4 computer.

In analogy to KP, the approximate core is generated by adding δ items on
each side of the center of the split interval. We created the cores with the e(duals)
efficiency. The values of δ were chosen in accordance with the results of the previ-
ous section, where an average core size of about 0.2n was observed. Table 2 lists
average objective values and run-times for the original problem, and percentage
gaps to the optimal solution (%opt = 100 · (z∗− z)/z∗), the number of times the
optimum was reached (#), as well as the average run-times %t (in percent of the
run-time required for solving the original problem) for cores of different sizes.

Observing the results of CPLEX applied to cores of different sizes, we see
that smaller cores can be solved substantially faster and the obtained solution
values are only slightly worse than the optimal ones given by the no core column.
The best results with respect to average run-times were achieved with δ = 0.1n,
the run-time could be reduced by factors going from 3 to 1000, whereas, most
importantly, the obtained objective values are very close to the respective optima
(0.1% on average). Solving the bigger cores needs more run-time, but almost all
of the optimal results could be reached, with still significant time savings.

4 Applying Metaheuristics to the Core

The question of how the reduction to MKP cores influences the performance of
metaheuristics arises due to the observed differences in run-times and solution
qualities of the previous section. Furthermore the core concept might enable us
to find better solutions for larger instances which cannot be solved to optimal-
ity. We therefore study a memetic algorithm and a relaxation guided variable
neighborhood search for solving the MKP, applied to MKP cores. The results of
Section 3.2 indicate that the obtained solutions should be good approximations
of the overall MKP optimum.

4.1 A Memetic Algorithm

The MA which we consider here is based on Chu and Beasley’s principles and
includes some improvements suggested in [6, 15, 16]. The framework is steady-
state and the creation of initial solutions is guided by the LP-relaxation of the
MKP, as described in [6]. Each new candidate solution is derived by selecting
two parents via binary tournaments, performing uniform crossover on their char-
acteristic vectors x, flipping each bit with probability 1/n, performing repair if a
capacity constraint is violated, and always performing local improvement. If such
a new candidate solution is different from all solutions in the current population,
it replaces the worst of them.

Both, repair and local improvement, are based on greedy first-fit strategies
and guarantee that any resulting candidate solution lies at the boundary of
the feasible region, where optimal solutions are always located. The repair pro-
cedure considers all items in a specific order Π and removes selected items
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(xj = 1 → xj = 0) as long as any capacity constraint is violated. Local
improvement works vice-versa: It considers all items in the reverse order Π and
selects items not yet appearing in the solution as long as no capacity limit is
exceeded.

Crucial for these strategies to work well is the choice of the ordering Π . Items
that are likely to be selected in an optimal solution must appear near the end
of Π . Following the results of Section 3.1 we determine Π by ordering the items
according to e(duals), as it has also been previously done in [3].

4.2 A Relaxation Guided VNS for the MKP

Relaxation Guided Variable Neighborhood Search (RGVNS) [14] is a re-
cently developed Variable Neighborhood Search (VNS) [7] variant where the
neighborhood-order of Variable Neighborhood Descent (VND) is dynamically
determined by solving relaxations of the neighborhoods. The RGVNS used here
for the MKP, is a slightly improved version of the approach described in [14].

Representation and Initialization. Solutions are directly represented by
binary strings, and all our neighborhoods are defined on the space of feasible
solutions only. We denote by I1(xf ) = {j | xf

j = 1} the index-set of the items
contained in the knapsack of a current solution xf and by I0(xf ) = {j | xf

j = 0}
its complement. The initial solution for the RGVNS is generated using a greedy
first-fit heuristic, considering the items in a certain order, determined by sorting
the items according to decreasing values of the solutions to the MKP’s LP-
relaxation; see [16].

ILP Based Neighborhoods. We want to force a certain number of items of
the current feasible solution xf to be removed from or added to the knapsack.
This is realized by adding neighborhood-defining constraints depending on xf

to the ILP formulation of the MKP.
In the first neighborhood, ILP-Remove-and-Fill IRF (xf , k), we force precisely

k items from I1 to be removed from the knapsack, and any combination of
items from I0 is allowed to be added to the knapsack as long as the solution
remains feasible. This is accomplished by adding the equation

∑
j∈I1(xf ) xj =∑

j∈I1(xf ) xf
j − k to (1)–(3).

In the second neighborhood, ILP-Add-and-Remove IAR(xf , k), we force pre-
cisely k items not yet packed, i.e. from I0, to be included in the knapsack. To
achieve feasibility any combination of items from I1 may be removed. This is
achieved by adding

∑
j∈I0(xf ) xj = k to (1)–(3).

As relaxations IRFR(xf , k) and IARR(xf , k) we use the corresponding LP-
relaxations in which the integrality constraints (3) are replaced by 0 ≤ xj ≤
1, j = 1, . . . , n. For searching the (integer) neighborhoods we use a general pur-
pose ILP-solver (CPLEX) with a certain time limit.

Classical Neighborhoods. As first neighborhood we use a simple swap
SWP(xf ), where a pair of items (xf

i , xf
j ), with i ∈ I1 and j ∈ I0, is exchanged,
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i.e. xf
i := 0 and xf

j := 1. Infeasible solutions are discarded. Note that this neigh-
borhood is contained in both, IRF (xf , 1) and IAR(xf , 1). Its main advantage is
that it can be explored very fast.

Based on the ideas of Chu and Beasley [3] and as another simplification of
IRF and IAR but an extension of SWP, we define two additional neighbor-
hoods based on greedy concepts. In the first case, the Remove-and-Greedy-Fill
neighborhood RGF (xf , k), k items are removed from xf ; i.e. a k-tuple of vari-
ables from I1(xf ) is flipped. The resulting solution is then locally optimized as
described in Section 4.1. In the second case, the Add-and-Greedy-Repair neigh-
borhood AGR(xf , k), k items are added to xf ; i.e. k variables from I0(xf ) are
flipped. The resulting solution, which is usually infeasible, is then repaired and
locally improved as previously described.

Relaxation Guided VND. The Relaxation Guided VND (RGVND) is based
on the previously defined neighborhoods and follows a best neighbor strat-
egy. The faster to solve neighborhoods are ordered as follows: N1:=SWP(xf ),
N2:=RGF (xf , 1), N3:=AGR(xf , 1). If none of these neighborhoods leads to an
improved solution, we solve the LP-relaxations of IRF (xf , k) and IAR(xf , k)
for k = 1, . . . , kmax, where kmax is a prespecified upper limit on the number of
items we want to remove or add. The neighborhoods are then sorted accord-
ing to decreasing LP-relaxation solution values. Ties are broken by considering
smaller ks earlier. Only the first βmax ILP-based neighborhoods are explored
before shaking.

Shaking. After RGVND has terminated, shaking is performed for diversifica-
tion. It flips κ different randomly selected variables of the currently best solution
and applies greedy repair and local improvement as previously described for the
MA. As usual in general VNS, κ runs from 1 to some κmax and is reset to 1 if an
improved solution was found. Furthermore, the whole process is iterated until a
termination criterion, in our case the CPU-time, is met.

5 Computational Experiments

We present several computational experiments where we evaluated the influence
of differently sized cores on the performance of CPLEX, the presented MA, and
RGVNS. The algorithms were given 500 seconds per run. Since the MA converges
much earlier, it was restarted every 1 000 000 generations, always keeping the so-
far best solution in the population. In RGVNS, CPLEX was given a maximum
of 5 seconds for exploring the ILP-based neighborhoods, kmax and βmax were set
to 10, and κmax = n. We used the hardest instances of the Chu and Beasley
benchmark set, i.e. those with n = 500 items and m ∈ {5, 10, 30} constraints. As
before, CPLEX 9.0 was used and we performed the experiments on a 2.4 GHz
Pentium 4 computer.

In Table 3 we display the results of CPLEX applied to cores of different sizes.
For comparison CPLEX was also applied to the original problem with the same
time limit. We list averages over ten instances of the percentage gaps to the
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optimal objective value of the LP-relaxation (%LP = 100 · (zLP − z)/zLP), the
number of times this core size yielded the best solution of this algorithm (#),
and the number of explored nodes of the branch and bound tree.

First, it can be noticed that CPLEX applied to approximate cores of differ-
ent sizes yields, on average, better results than CPLEX applied to the original
problem. Second, the number of explored nodes increases with decreasing prob-
lem/core size. The best average results are obtained with higher core sizes.

Table 3. Solving cores of different sizes with CPLEX (avgerage over 10 instances and
average over all problem classes, n = 500)

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Nnodes %LP # Nnodes %LP # Nnodes %LP # Nnodes
5 0.25 0.080 5 5.50E5 0.075 9 1.00E6 0.076 9 9.85E5 0.076 8 8.34E5

0.5 0.040 6 5.06E5 0.039 7 1.05E6 0.039 9 1.00E6 0.039 9 8.38E5
0.75 0.025 6 5.36E5 0.024 10 1.05E6 0.025 8 1.02E6 0.025 8 9.04E5

10 0.25 0.206 1 3.15E5 0.198 5 1.10E6 0.195 6 6.99E5 0.198 4 5.68E5
0.5 0.094 4 3.01E5 0.088 8 1.11E6 0.090 6 6.95E5 0.092 5 5.73E5
0.75 0.066 4 3.05E5 0.065 5 1.07E6 0.064 7 6.83E5 0.065 7 5.59E5

30 0.25 0.598 2 1.11E5 0.621 0 4.22E5 0.566 4 3.06E5 0.537 6 2.28E5
0.5 0.258 2 1.15E5 0.246 3 4.50E5 0.243 4 3.28E5 0.250 2 2.38E5
0.75 0.158 2 1.12E5 0.151 6 4.48E5 0.160 1 3.14E5 0.151 5 2.36E5

Average 0.169 3.6 3.17E5 0.167 5.9 8.55E5 0.162 6.0 6.70E5 0.159 6.0 5.53E5

In Table 4 the results of the MA applied to approximate cores of different sizes
are shown. In order to evaluate the benefits of using a core-based approach, we
also applied the MA to the original problem. The table lists (%LP), the number
of times this core size yielded the best solution of this algorithm (#), and the
average numbers of MA iterations.

As observed with CPLEX, the use of approximate cores consistently increases
the achieved solution quality. The core size has a significant influence on the
number of iterations performed by the MA, which can be explained by the
smaller size of the problem to be solved. This also seems to be a reason for
the better results, since more candidate solutions can be examined in the given
run-time. Furthemore, the search space of the MA is restricted to a highly
promising part of the original search space. The best average results were ob-
tained with δ = 0.15n. The smaller approximate cores yield better results on
average.

In Table 5, the results of RGVNS when applied to approximate cores of differ-
ent sizes are shown together with the results of RGVNS on the original problem.
The table also displays the average total number of iterations performed by
RGVND inside RGVNS.

The results obtained by RGVNS applied to the smaller approximate cores
clearly dominate the results obtained without core and with δ = 0.2n. This can
be explained by the fact that CPLEX is used in RGVNS, and that it is able
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Table 4. Solving cores of different sizes with the MA (avgerage over 10 instances and
average over all problem classes, n = 500)

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter
5 0.25 0.078 6 1.40E7 0.073 10 5.08E7 0.074 9 4.07E7 0.074 9 3.33E7

0.5 0.040 6 1.35E7 0.039 9 5.07E7 0.039 9 4.07E7 0.040 7 3.33E7
0.75 0.025 7 1.46E7 0.024 9 5.07E7 0.024 10 4.08E7 0.024 9 3.34E7

10 0.25 0.208 5 1.26E7 0.202 5 4.54E7 0.202 6 3.62E7 0.208 4 2.90E7
0.5 0.099 2 1.21E7 0.093 6 4.51E7 0.091 8 3.59E7 0.093 5 2.89E7
0.75 0.066 6 1.31E7 0.065 8 4.53E7 0.067 4 3.59E7 0.068 4 2.87E7

30 0.25 0.604 1 9.10E6 0.573 5 3.08E7 0.575 5 2.39E7 0.569 6 1.92E7
0.5 0.254 3 8.10E6 0.257 1 3.08E7 0.246 7 2.37E7 0.253 3 1.90E7
0.75 0.159 4 8.12E6 0.156 5 3.14E7 0.157 3 2.35E7 0.157 5 1.96E7

Average 0.170 4.4 1.17E7 0.165 6.4 4.23E7 0.164 6.8 3.35E7 0.165 5.8 2.72E7

Table 5. Solving cores of different sizes with RGVNS (avgerage over 10 instances and
average over all problem classes, n = 500)

m α no core δ = 0.1n δ = 0.15n δ = 0.2n

%LP # Niter %LP # Niter %LP # Niter %LP # Niter
5 0.25 0.088 4 230 0.080 5 208 0.080 6 223 0.082 4 230

0.5 0.043 5 236 0.040 7 215 0.040 8 226 0.040 7 239
0.75 0.027 5 246 0.026 8 230 0.026 8 252 0.026 7 240

10 0.25 0.230 0 225 0.198 7 200 0.211 2 193 0.210 3 205
0.5 0.108 1 209 0.096 5 201 0.096 3 199 0.100 1 205
0.75 0.069 2 208 0.066 7 207 0.066 7 211 0.066 4 214

30 0.25 0.595 5 202 0.599 3 196 0.593 4 191 0.609 5 195
0.5 0.263 3 197 0.260 0 198 0.254 6 189 0.261 3 197
0.75 0.168 2 191 0.158 5 191 0.164 3 187 0.164 2 191

Average 0.177 3.0 216 0.169 5.2 205 0.170 5.2 208 0.173 4.0 213

to find better solutions when dealing with smaller problem sizes. Interestingly,
the number of iterations stays about the same for the different settings. The
reason is that CPLEX is given the same constant time limit for searching for
the neighborhoods within RGVND.

Comparing our results to the best known solutions [19], we are able to reach
the best solutions for m = 5, and stay only 0.5% below these solutions for
m ∈ {10, 30}, requiring 500 seconds, whereas in [19] up to 33 hours were needed.

6 Conclusions

We presented the new core concept for the multidimensional knapsack prob-
lem, extending the core concept for the classical one-dimensional 0/1-knapsack
problem. An empirical study of the exact core sizes of widely used benchmark
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instances with different efficiency measures was performed. The efficiency value
using dual-variable values as relevance factors yielded the smallest possible split-
intervals and the smallest cores.

We further studied the influence of restricting problem solving to approximate
cores of different sizes, and observed significant differences in terms of run-time
when applying the general-purpose ILP-solver CPLEX to approximate cores or
to the original problem, whereas the objective values remained very close to the
respective optima.

We finally applied CPLEX and two metaheuristics to approximate cores of
hard to solve benchmark instances and observed that using approximate cores
of fixed size instead of the original problem clearly and consistently improves
the solution quality when using a fixed run-time.

In the future, we want to further examine the MKP core concept and possibly
extend it to other combinatorial optimization problems.
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Abstract. We consider scheduling heuristics for batching machines
from semiconductor manufacturing. A batch is a collection of jobs that
are processed at the same time on the same machine. The processing
time of a batch is given by the identical processing time of the jobs
within one incompatible family. We are interested in minimizing total
weighted tardiness and makespan at the same time. In order to solve
this problem, i.e. generate a Pareto-front, we suggest a multiobjective
genetic algorithm. We present results from computational experiments
on stochastically generated test instances that show the good solution
quality of the suggested approach.

1 Introduction

A great majority of academic scheduling research deals with single-objective
problems. This research focuses on multiobjective scheduling of batch process-
ing machines found in the diffusion and oxidation areas of a semiconductor
wafer fabrication facility (wafer fab). The processing times of these batching
operations are extremely long (10 hours) when compared to other operations
(1-2 hours) in a wafer fab. Mathirajan and Sivakumar [9] state that the effective
scheduling of these operations is important to achieve good system performance.
Though several jobs can be processed simultaneously in these batch processing
machines, process restrictions require that only jobs belonging to the same fam-
ily be processed together at one time. The jobs to be processed have different
priorities/weights, due-dates and ready times. In the presence of unequal ready
times, it is sometimes advantageous to form a non full batch while in other sit-
uations it is a better strategy to wait for future job arrivals in order to increase
the fullness of the batch.

We model diffusion and oxidation operations as parallel batch processing ma-
chines with incompatible job families. The performance measures to be simulta-
neously minimized are total weighted tardiness and makespan. Total weighted
tardiness is related to on-time delivery performance whereas a small makespan
indicates a high system utilization.
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There are many papers that deal with batching (cf. the two recent survey
papers [9, 14]). Most of the papers consider single-objective batching problems.
One known exception is [6] where the simultaneous minimization of earliness
and tardiness of jobs on a batch processing machine is discussed as a bicrite-
ria scheduling problem. Several papers discuss multicriteria scheduling problems
for parallel machines. We refer, for example, to [1]. In this paper an integrated
convex preference measure is introduced. Hybrid genetic algorithms of MPGA
(Multi-Population Genetic Algorithm) [2] and MOGA (Multi-Objective
Genetic Algorithm) [12] type are used. A comparison of the new measure
with existing measures is performed. In this paper we extend the previous work
[11] of the second present author for scheduling of batch machines from a single-
objective situation to a bicriteria situation.

This paper is organized as follows. In Section 2 we describe the problem.
Then, we describe the solution technique to solve the multiobjective scheduling
problem. We present results of computational experiments in Section 4.

2 Problem Setting

The assumptions involved in the scheduling of parallel batch processing machines
with incompatible job families and unequal ready times of the jobs to minimize
total weighted tardiness and makespan are:

1. Jobs of the same family have the same processing times.
2. All the batch processing machines are identical in nature.
3. Once a machine is started, it cannot be interrupted, i.e. no preemption is

allowed.

We use the following notation throughout the rest of the paper.

1. Jobs fall into fam different incompatible families that cannot be processed
together.

2. There are n jobs that have to be scheduled.
3. There are m identical machines in parallel.
4. There are nj jobs of family j to be scheduled. We have n =

∑fam
j=1 nj .

5. Job i of family j is represented as ij.
6. The priority weight for job i of family j is represented as wij .
7. The due date of job i of family j is represented as dij .
8. The processing time of jobs in family j is represented as pj .
9. The ready time of job i in family j is represented as rij .

10. The batch processing machine capacity is B jobs.
11. Batch k of family j is represented by Bkj .
12. The completion time of job i of family j is denoted by Cij .
13. The makespan is defined as Cmax := maxij{Cij}. Minimizing the makespan

usually leads to a high utilization of the machines.
14. The weighted tardiness of job ij is represented as wijTij = wij(Cij − dij)+,

where we use the notation z+ := max(z, 0) throughout the rest of the paper.
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The total weighted tardiness of all jobs is defined as TWT :=
∑

ij wijTij .
Minimizing total weighted tardiness of the jobs implies a high customer
satisfaction level because of a good on-time delivery of the jobs.

Using the α|β|γ notation from the scheduling literature [5] this problem can be
represented as:

Pm|rij , batch, incompatible|TWT ,Cmax. (1)

Here, we use the notation Pm for an identical parallel machine environment. The
batching with incompatible job families is denoted by batch incompatible. Finally,
the γ field is used to indicate the two used objectives, TWT and makespan.

The single machine total weighted tardiness scheduling problem is NP-Hard
[13]. Hence, the parallel batch machine scheduling problem with TWT objec-
tive is also NP-Hard. The parallel machine scheduling problem with makespan
objective is NP-Hard [13]. Therefore, the parallel batch machine problem with
makespan objective is also NP-Hard. Finally, problem (1) is NP-Hard because it
would be NP-Hard if each of the two objectives would be optimized separately
[13, 15]. Hence, we have to look for efficient heuristics.

3 Solution Approach for the Multiobjective Batching
Problem

In this section we briefly describe the overall three-phase solution approach. It
contains a batch formation, a batch assignment, and a batch sequencing phase
respectively. Then we characterize the NSGA-II metaheuristic that is used for
the second phase. Furthermore, we also describe the usage of a more advanced
version of a hybrid multiobjective metaheuristic combining the NSGA-II algo-
rithm and a local search technique in the assignment phase.

3.1 Three-Phase Scheduling Approach

We extend the batch scheduling approach from [11] to the multiobjective situa-
tion. In the first phase, we have to form batches. In the second phase, we assign
each batch from the first phase to one of the parallel machine. The third phase
is responsible for sequencing the batches on each machine.

We start from a fixed point of time t and consider a time window (t, t + Δt)
in the first phase. Let the set

M̄(j, t,Δt) := {ij|rij ≤ t + Δt} (2)

denote the set of jobs from family j whose ready times rij are smaller than t+Δt.
Let Iij be an index-based criterion for ranking these jobs and let pos(ij) be the
position of job ij based on Iij . From the set M̄(j, t,Δt) we derive the subset:

M̃(j, t,Δt, thres) := {ij|ij ∈ M̄(j, t,Δt) and pos(ij) ≤ thres}, (3)
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where thres is the maximum number of jobs in this new set. The ranking of jobs
in the set M̄(j, t,Δt) is obtained by the Apparent Tardiness Cost (ATC)-based
criterion (cf. [13])

Iij,ATC(t) :=
(

wij

pj

)
exp

(
− (dij − pj + (rij − t))+

κp̄

)
, (4)

where κ is a look-ahead parameter and p̄ is the average processing time of the
remaining unscheduled jobs. By t we denote the time for decision-making. It
is well known that the application of ATC-based rules leads to schedules with
small TWT [13]. The jobs in the set M̄(j, t,Δt) are ranked in the non-decreasing
order of Iij,ATC and the first thres are chosen for the subset M̃(j, t,Δt, thres).

All possible batching combinations are considered in this subset. To choose a
single batch from these batches, we use the index Ibj(t):

Ibj(t) :=
nbj∑
i=1

(
wij

pj

)
exp

(
− (dij − pj − t + (rbj − t)+)+

κp̄

)
. (5)

We denote the number of jobs in the batch by nbj . Furthermore, we set
rbj := maxij∈Bbj

(rij). The Ibj(t) index is called the BATC (Batched Apparent
Tardiness Cost) index. The batch with the highest value of Ibj(t) is scheduled.

The second phase is based on genetic algorithms and is explained in more
detail in Sections 3.2 and 3.3.

After the assignment step performed in the second phase the batches are
sequenced on each single batch machine by using the BATC index (5).

3.2 NSGA-II for the Second Phase

The NSGA-II algorithm [4] is a well-established metaheuristic for multiobjec-
tive combinatorial optimization problems based on the principles of genetic al-
gorithms (GAs). NSGA-II evaluates each solution by its domination to each
other population member. Using a nondominated sorting procedure the algo-
rithm splits the complete population into several fronts in each iteration. A
front for a population member (a solution y) is determined by the number of so-
lutions that dominate y and the solutions dominated by y. Taking this property
into account any member of a front is Pareto-optimal to each other solution of
the front it belongs to. Clearly, the solutions of the first front are nondominated
by any other solution of the population. In order to ensure elitism NSGA-II
joins in each iteration the parent and offspring populations. The fitness of an
individual is assigned according to its front. The new population is generated by
iteratively adding solutions from the first front. The population is filled up with
solutions from the remaining fronts when the size of the first front is smaller as
the population size. To ensure diversification NSGA-II uses a crowding compar-
ison procedure for the tournament section [10]. The same procedure is used to
select the solutions from the last front that do not fit completely into the new
generation.
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3.3 Combining NSGA-II with Local Search for the Second Phase

A hybrid evolutionary approach based on the NSGA-II algorithm is proposed
by Deb and Goel in [3]. Each solution in the Pareto-front is improved by a
local search when the NSGA-II algorithm is finished. The local search moves the
outcomes of NSGA-II closer to the true Pareto-front Ytrue.

In this paper, we adopt the concept proposed in [3] for our multiobjective
batching approach. A local search procedure tries to improve the objectives
for every solution from the NSGA-II Pareto-front. The local search procedure
uses a single-objective fitness function instead of the multiobjective NSGA-II
metaheuristic. We use a weighted objective approach in order to transfer the
multiobjective problem into a problem with single-objective fitness function.

Therefore, we generate for each ob-Require: Yknown, stepsLS

1: for all ywork ∈ Yknown do
2: Yresult = Yresult ∪nondom

ywork

3: calculate λTWT and λCmax

4: calculate f(ywork)
5: counter = 0
6: while counter < stepsLS do
7: yneighbor = move(ywork)
8: calculate f(yneighbor)
9: if f(yneighbor) < f(ywork)

then
10: ywork = yneighbor

11: counter = 0
12: else
13: counter++
14: end if
15: end while
16: Yresult = Yresult ∪nondom

ywork

17: end for
18: return Yresult

Fig. 1. local search procedure

jective a weight λk according to its
location within the Pareto-front. The
weights for each objective are deter-
mined by

λTWT (y) :=
fmax

TWT − fTWT (y)
fmax

TWT − fmin
TWT

,

λCmax
(y) :=

fmax
Cmax

− fCmax
(y)

fmax
Cmax

− fmin
Cmax

,

(6)

where we denote by fmax
k and fmin

k the
maximum and the minimum value of
the objective function fk. Additionally,
the weights are normalized. If fmax

k =
fmin

k is valid in expression (6) then we
set λk = 1.

The weights for a solution y take
into account its location within the
Pareto-front, i.e., for a solution y with
fTWT (y) = fmin

TWT (y) and fCmax
(y) =

fmax
Cmax

(y) holds λTWT (y) = 1 and
λCmax

(y) = 0. In this situation, a local
search hillclimber accepts any solution
with a smaller TWT without consider-

ing Cmax.
The single-objective fitness function f using the weights calculated in (6) is

defined in equation (7):

f(y) := λTWT (y) · fTWT (y) + λCmax
· fCmax

(y). (7)

The complete local search procedure used in this research is given by
Figure 1. The local search procedure is called with a solution front Yknown and
the maximum number of local search steps denoted by stepsLS . Finally, a set of
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Pareto-optimal solutions is returned by the procedure. We introduce an exter-
nal archive Yresult that stores all nondominated solutions found during the local
search. The operator ∪nondom denotes the update procedure for Yresult. ∪nondom

adds a solution to Yresult if it dominates solutions in Yresult or if it is Pareto-
optimal for solutions in Yresult. Solutions in Yresult dominated by the added solu-
tions are removed. The local search iterates over all solutions in Yknown. We first
determine the weights λTWT and λCmax

and calculate the fitness value for the
current solution ywork. The inner loop (line 6) performs the local search. We con-
sider for each solution ywork stepsLS solutions in its neighborhood. We define the
neighborhood of a solution as the set of solutions obtained by simply swapping
two batches across different machines. The operator move(ywork) generates a so-
lution yneighbor in the neighborhood of ywork by randomly exchanging two batches
between two machines. The fitness for yneighbor is calculated using expression (7).
A new solution is accepted as current solution if f(yneighbor) < f(ywork). After-
ward, the local search restarts with the new current solution ywork.

Figure 2 illustrates the local search for a Pareto-front Yknown generated by
NSGA-II. The arrows connect the solutions generated by the local search with
the initial solution in Yknown. Due to the application of the local search proce-
dure described above we improve the solutions yA, yB, and yC . Solution yA has
the lowest TWT value and the highest Cmax value. The weights used within the
fitness function are λTWT (yA) = 1 and λCmax

(yA) = 0.
The highest TWT value and the
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Fig. 2. Example Improvement of Solu-
tions from Yknown by Local Search

lowest Cmax value are obtained for so-
lution yC . For solution yC the weights
are λTWT (yC) = 0 and λCmax

(yC) = 1.
The corresponding weights for solu-
tion yB are λTWT (yB) = 0.86 and
λCmax

(yB) = 0.14. Figure 2 shows that
the local search generates for yA two
new solutions y1 and y2 and only one
new (improved) solution for yB and
yC . Figure 2 clearly states that the
objective for the local search of yA

(determined by the weights) is to min-
imize TWT without considering Cmax.
Therefore, any solution with a smaller
TWT is accepted by the local search procedure, even if Cmax is higher than
fCmax

(ywork). For solution yC the local search is focused on minimizing Cmax

without considering TWT . Analyzing the local search results for solutions in the
’middle’ of the input Pareto-front we can conclude that the local search for this
problem is unable to find solutions in the neighborhood with a smaller fitness
value. Finally, the results show that a Pareto-front generated by a NSGA-II
can be improved by applying a local search procedure for each solution in Yknown.



Multiobjective Scheduling of Jobs with Incompatible Families 215

4 Results of Computational Experiments

In this section, we describe the design of experiments. Then we discuss the results
of computational experiments.

4.1 Design of Experiments

We use a similar design of experiments as in [11]. We expect that the quality
of the results is influenced by the number of parallel machines, the number
of jobs and the number of incompatible families. We perform ten indepen-

Table 1. Design of Experiments

Factor Level Count

Number of Machines m = 2, 3, 4 3
Number of Jobs n = 60, 80, 100 3
Batch Size B = 4, 8 2
Number of Families fam = 3 1

2 with probability of 0.2
4 with a probability of 0.2

Family Processing Time 10 with a probability of 0.3 1
16 with a probability of 0.2
20 with a probability of 0.1

Weight wij per job U(0,1)
Ready Times rij ∼ U(0, α

mB

∑
pij) 9

Due Dates dij ∼ U(0, β
mB

∑
pij)

α = 0.25, 0.50, 0.75
β = 0.25, 0.50, 0.75
Total parameter combinations 162
Number of problem instances 10
Total problems 1620

dent runs for each test instance with both NSGA-II and NSGA-II with local
search. We denote the NSGA-II approach with local search for abbreviation
with NSGA-II-LS. We summarize the design used in Table 1. The Pareto-
optimal solutions out of all runs are aggregated to the solution Pareto-front
Yknown for each approach. A near-to-optimal Pareto-front was generated by
Ytrue := Yknown(NSGA-II) ∪nondom Yknown(NSGA-II-LS). Throughout all ex-
periments we use Δt = 2h, thres = 10 and stepsLS = 30 . We encoded a solution
for the GAs by an integer string with the size equal to the number of batches
formed in the first phase. Each gene in the chromosome represents the maschine
used for processing the batch. The population size is 100. The initial population
is generated by randomly assigning a machine to each batch. The GAs stops after
300 generations. A uniform crossover [10] with crossover probability of 1 is used.
The mutation operator randomly exchanges two batches between two machines.
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We use a mutation probablity pmut = 0.02. The parameters for the GAs are de-
termined by trial and error based on intensive computational experiments. Both
NSGA-II and NSGA-II-LS are implemented by using MOMHLib++ [8] under
the linux operating system. The experiments are performed on a Pentium IV, 2
GHz PC.

4.2 Performance Metrics for the Assessment of the Algorithms

In the single-objective case an algorithm outperforms a second one if it generates
a solution with an improved objective value (with eventually fewer computational
effort). As shown in Section 3 a multiobjective algorithm, however, generates a
set of Pareto-optimal solutions (a Pareto-front) instead of a single solution.

Performance metrics are required in order to evaluate and compare the out-
come of several multiobjective algorithms. A common concept for evaluating
the outcomes of a multiobjective algorithm is an approximation-based evalua-
tion. Approximation-based performance metrics evaluate the approximation of
a known (near-to-optimal) Pareto-front Ytrue by a Pareto-front Yknown [7]. In
this paper, we use cardinality-based and distance-based metrics.

Veldhuizen proposed some cardinality-based performance metrics in [16]. We
use the following cardinality-based performance metrics for the assessment for
the two algorithms described in Section 3. The metric Overall Non-dominated
Vector Generation (ONVG) is the number of solutions in a Pareto-front Yknown.
It is defined by

ONV G := |Yknown|. (8)

The metric Overall True Non-dominated Vector Generation (OTNVG) is
given by the number of solutions from Yknown that are in Ytrue. A high value
for OTNVG indicates that many solutions of Yknown are used to generate Ytrue.
This measure is defined through the expression

OTNV G := |{y|y ∈ Yknown ∩ Ytrue}|. (9)

The third metric is called Overall Non-dominated Vector Generation Ratio
(ONVGR). It is the ratio of ONVG and |Ytrue|. More formally, this measure is
defined as follows:

ONV GR := ONV G/|Ytrue|. (10)

We denote the error ratio for the solutions from Yknown that are not in Ytrue

by Error. The cardinality-based metric Error is defined as follows:

Error :=

|Yknown|∑
i=1

ei

ONV G
, (11)

where

ei :=
{

0 : if yi ∈ Yknown ∩ Ytrue

1 : otherwise .

An Error value close to one means that only a small number of solution from
Yknown is in Ytrue. Error = 0 is desirable. Jaszkiewicz points out in [7] that
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cardinality-based performance measures are not enought to assess the approx-
imation of a Pareto-front Ytrue by a Pareto-front Yknown. Thus, we use addi-
tionally distance-based performance measures. Veldhuizen [16] proposes the dis-
tance measure dist representing the average distance dist between solutions y ∈
Yknown and their closest solution y′ ∈ Ytrue. The distance dist is calculated by

dist :=

√ ∑
y∈Yknown

(
min

y′∈Yknown

d(y, y′)
)2

ONV G
. (12)

Here the distance d(y, y′) between a solutions y ∈ Yknown and y′ ∈ Yknown is
given by

d2(y, y′) :=
J∑

j=1

(θk(fk(y)− fk(y′)))2 , (13)

where θk = (fmax
k − fmin

k )−1 for j = 1, ...,J are weights for normalizing the
objective value fk. If fmax

k = fmin
k then θk(fk(y) − fk(y′)) = 1 holds. Further-

more, we use the distance metrics proposed by Jaszkiewicz in [7] that consider
the distance between the solutions in Ytrue and the closest neighbors in Yknown.
In this paper, we use the following distance performance metrics:

dist1 :=
1

|Ytrue|
∑

y∈Ytrue

{ min
y′∈Yknown

{d(y′, y)}},

dist2 := max
y∈Ytrue

{ min
y′∈Yknown

{d(y′, y)}}.
(14)

Here the distance d(y, y′) is calculated using equation (13). The distance dist1
shows the average distance between a solution y ∈ Ytrue and its closest neighbor
y′ ∈ Yknown. The worst case is provided by the maximum distance between a
solution y ∈ Ytrue and the closest neighbor y′ ∈ Yknown. It is covered by dist2.
A measure for the uniformity of the approximation is determined by

dist3 = dist2/dist1. (15)

If dist1 = 0 then dist3 = 1 holds.

4.3 Results

Table 2 presents the obtained computational results. Each row of Table 2 com-
pares the solution front Yknown obtained by using NSGA-II and NSGA-II-LS
with the near-to-optimal Pareto-front Ytrue. A solution front Yknown is gener-
ated by the Pareto-optimal solutions out of all runs. For each solution front
Yknown we show the metrics introduced in Section 4.2. Furthermore, Table 2
shows the average computational time for a single run in seconds.

The first two rows in Table 2 provide an overall comparison of the two al-
gorithms investigated in this paper. The values for each performance metric
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represent a average value over all test problems with the given specific of the
first row. B = 4 means for example that we take the average over all test in-
stances with a batch size of four.

The results clearly show that NSGA-II-LS outperforms the generic NSGA-II
for all performance metrics. The overall results show that the values obtained for
ONV G in Yknown are similar for both approaches. Furthermore, the OTNVG
value for NSGA-II-LS points out that this approach contributes more solutions
for Ytrue than NSGA-II. The value for Error supports this observation. The dis-
tance metrics clearly identify the NSGA-II-LS solution front as the front with
the closest distance to Yknown. The smaller dist value for the NSGA-II-LS ap-
proach shows that all solutions from Yknown(NSGA-II-LS) have a closer distance
to the nearest neighbor in Ytrue than solutions in Yknown(NSGA-II). The ap-
proximation of Ytrue by Yknown is expressed by the distance measures dist1,
dist2, and dist3. These distance measures again show that Yknown(NSGA-II-LS)
outperforms Yknown(NSGA-II). The values dist1 and dist2 indicate that for the
NSGA-II-LS approach the average and maximum distance between a solution
in Ytrue and the closest solution in Yknown is smaller. The results for different

Table 2. Computational Results

Algorithm ONV G OTNV G ONV GR Error dist dist1 dist2 dist3 T ime

NSGA-II 4.30 2.15 1.01 0.46 0.12 0.19 0.41 2.60 9.41overall
NSGA-II LS 4.41 2.55 1.03 0.39 0.10 0.16 0.34 2.56 9.45
NSGA-II 3.71 1.89 1.02 0.45 0.14 0.21 0.41 2.30 10.66m=3
NSGA-II LS 3.87 2.11 1.07 0.42 0.13 0.19 0.36 2.20 10.70
NSGA-II 4.50 2.21 1.01 0.48 0.12 0.19 0.41 2.69 9.24m=4
NSGA-II LS 4.51 2.69 1.01 0.37 0.09 0.14 0.33 2.69 9.27
NSGA-II 4.70 2.34 1.00 0.46 0.11 0.18 0.42 2.81 8.34m=5
NSGA-II LS 4.84 2.85 1.01 0.38 0.09 0.14 0.33 2.80 8.37
NSGA-II 4.32 2.21 0.99 0.45 0.11 0.17 0.38 2.64 6.09n=60
NSGA-II LS 4.55 2.65 1.04 0.39 0.09 0.14 0.29 2.64 6.10
NSGA-II 4.19 2.07 1.00 0.47 0.13 0.20 0.42 2.49 9.28n=80
NSGA-II LS 4.39 2.50 1.08 0.40 0.11 0.17 0.37 2.61 9.31
NSGA-II 4.41 2.16 1.04 0.48 0.14 0.21 0.44 2.67 12.87n=120
NSGA-II LS 4.28 2.51 0.97 0.38 0.10 0.16 0.36 2.44 12.93
NSGA-II 4.18 2.04 1.03 0.47 0.13 0.21 0.44 2.45 11.93B=4
NSGA-II LS 4.30 2.45 1.06 0.39 0.11 0.17 0.36 2.40 11.96
NSGA-II 4.43 2.25 0.99 0.46 0.11 0.17 0.39 2.75 6.90B=8
NSGA-II LS 4.52 2.65 1.00 0.39 0.10 0.14 0.32 2.73 6.93

values for m point out that the number of solutions in Yknown increases for
both approaches when m increases. Comparing the cardinality-based metrics
for different number of machines indicates that NSGA-II-LS performs better
than NSGA-II. The distance metrics also identify the NSGA-II-LS approach
as the superior approach. The distance-based performance measure results for
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NSGA-II-LS with different number of machines show that the distance between
Yknown(NSGA-II-LS) and Ytrue is similar for all m. Thus, the results obtained
here show that the number of machines has no impact on the solution quality.
Analyzing these facts we have to take into account that the near-to-optimal
Pareto-front is only generated by the nondominated solutions from NSGA-II
and NSGA-II-LS. A Pareto-front Yknown with solutions from more approaches
might lead to other results. The results for different number of jobs show that
when the problem becomes harder, i.e., in case of more jobs, NSGA-II-LS gen-
erates fewer solutions and has a lower contribution to Ytrue. We can conclude
that NSGA-II-LS outperforms NSGA-II for all investigated values of n. With
an increase of the batch size B the first phase generates fewer batches. Thus,
the decision space in the second phase becomes smaller. The results in Table 2
show that both approaches generate more solutions for B = 8. The values for
OTNV G show that both approaches contribute more solutions for Yknown with
a higher B. The distance-based performance measures show that a larger B has
only a small impact on the distance between Yknown and Ytrue.

Clearly, the additional local search causes a higher computational effort. A
comparison of the values for the column Time shows that NSGA-II-LS runs
slower than NSGA-II. Taking into account the higher solution quality obtained
by NSGA-II-LS this is a reasonable additional effort. An other remarkable fact
for the solutions in Ytrue is that the average TWT values of the solutions are
similar to the average TWT values obtained by using the single-objectice ap-
proach from [11].
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Fig. 3. Comparison of Ytrue and Pareto-fronts Obtained by NSGA-II and NSGA-II-LS

Figure 3 shows the Pareto-fronts for two test problems. Each plot shows the
Pareto-fronts Yknown(NSGA-II), Yknown(NSGA-II-LS), and Ytrue. Both plots
emphasis the analytic results shown in Table 2. All solutions in Yknown(NSGA-II)
are dominated by solution in Yknown(NSGA-II-LS). Therfore, for both prob-
lems the near-to-optimal Pareto-front Ytrue is formed by solutions from
Yknown(NSGA-II-LS).
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5 Conclusions and Future Research
In this paper, we discuss a multiobjective scheduling problem for parallel batch
machines. We suggest the usage of a genetic algorithm in order to determine
Pareto efficient solution. Then, in a second step, we incorporate a local search
technique in the overall solution scheme in order to improve the solution qual-
ity. We present the results of computational experiments that show that the
NSGA-II combined with local search techniques outperforms the pure NSGA-II
algorithm.

There are several directions for future research. First of all it seems to be
possible to replace the genetic algorithm based approaches by other local search
techniques like simulated annealing or tabu search. It seems to be possible to con-
sider more sophisticated local search techniques based on dominance properties.
Here, a swapping of jobs across batches based on their potential contribution to
TWT and/or makespan reduction should be done.
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Abstract. Combinatorial optimization problems with multiple objectives are, in 
general, more realistic representations of practical situations than their counter-
parts with a single-objective. The bi-objective minimum spanning tree problem 
is a NP-hard problem with applications in network design. In this paper a me-
metic algorithm is presented to solve this problem. A computational experiment 
compares the proposed approach with AESSEA, a known algorithm of the  
literature. The comparison of the algorithms is done with basis on the binary 
additive ε-indicator. The results show that the proposed algorithm consistently 
produces better solutions than the other method. 

1   Introduction 

Combinatorial optimization problems with multiple objectives are natural extensions 
of single-objective problems. Although single-objective combinatorial problems 
model a great number of applications, in many real situations they can be very sim-
plistic representations, since they can not deal with conflicting points equivalent to the 
multiple objectives. A problem that arises when considering more suitable models to 
represent actual applications, as the case of multiple objectives, is that, in general, 
those extensions have an increasing in complexity with relation to their counterparts 
with a single-objective. This is the case, for instance, of the Minimum Spanning Tree 
and the Linear Assignment Problem [5]. 

The general multi-objective minimization problem (with no restrictions) can be 
stated as: 

“minimize” f(x) = (f1(x), ..., fk(x)), subjected to x ∈ X 

where, x is a discrete value solution vector and X is a finite set of feasible solutions. 
Function f(x) maps the set of feasible solutions X in ℜk, k > 1 being the number of  
objectives. 

Once there is not only a single solution for the problem, the word minimize has to 
be understood in another context. Let x, y ∈ X, then x dominates y, written x y, if 
and only if ∀i, i=1,...k, fi(x)  fi(y) and ∃i, such that fi(x) < fi(y). The set of optimal so-
lutions X* ⊆ X is called Pareto optimal. A solution x* ∈ X* if there is no x ∈ X such 
that x x*. The non-dominated solutions are said also to be efficient solutions. Thus, 
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to solve a multi-criteria problem, one is required to find the set of efficient solutions. 
Solutions of this set can be divided in two classes: the supported and nonsupported ef-
ficient solutions. The supported efficient solutions can be obtained by solving the 
minimization problem with a weighted sum of those objectives. More formally [6], 

Minimize ( )i
ki

i xf
,...,1=

 , where 1
,...,1

=
= ki

i
, λi > 0, I = 1,…,k 

The nonsupported efficient solutions are those which are not optimal for any 
weighted sum of objectives. This set of solutions is a major challenge for researchers. 

On the last three decades, a great effort has been dedicated to the research of multi-
criteria problems. Some classes of exact algorithms are listed in the paper of Ehrgott 
and Gandibleux [6], where a number of applications are also reported. 

Since exact approaches are able to solve only small instances within a reasonable 
computing time, approximation algorithms, mainly based upon metaheuristic tech-
niques, have been proposed to solve multi-criteria problems [7]. Among those  
approaches, the Evolutionary Algorithms are one of the most popular. A survey of 
evolutionary algorithms for multi-objective problems is presented by Coello [4]. 

The Memetic Algorithms, introduced by Moscato [20], are evolutionary algorithms 
which unify the diversification potential of Genetic Algorithms with methods special-
ized in intensify the search in certain regions of the solution space. It has been  
observed that for a wide range of applications those algorithms perform better than 
classical Genetic Algorithms [19]. 

Section 3 presents a Memetic Algorithm to solve the Biobjective Minimum Span-
ning Tree Problem, presented in section 2. A direct encoding of the trees and a  
crossover operator based upon the work of Raidl [24] are utilized. A Tabu Search 
procedure is proposed, as part of the main algorithm, as an intensification tool. 

A computational experiment compares the proposed algorithm with AESSEA, an-
other evolutionary approach proposed previously for the same problem [16]. The  
algorithms are applied to 39 instances with number of nodes ranging from 10 to 500, 
generated in accordance with the method introduced by Knowles [14].  

A challenging issue in multi-criteria optimization is to define quantitative measures 
for the performance of different algorithms. Zitzler et al. [28] proposed a general bi-
nary indicator which is utilized in this work for the task of algorithms comparison. 
Their binary additive ε-indicator is considered to compare the quality of the sets of 
solutions generated by each algorithm. 

Finally some concluding remarks are drawn in section 5. 

2   The Multi-objective MST 

A spanning tree of a connected undirected graph G = (N, E) is an acyclic subgraph of 
G with n - 1 edges, where n = |N|. If G is a weighted graph, a minimum spanning tree, 
MST, of G is spanning tree for which the summation of the weights of its edges is 
minimum over all spanning trees of G. The MST is a well known combinatorial opti-
mization problem with applications in distinct areas such as, networks design and 
clustering. Its theoretical importance comes from the fact that it may be utilized in ap-
proximation algorithms for other combinatorial optimization problems such as the 
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Traveling Salesman Problem [12] and the Steiner Tree [13]. The MST is solvable in 
polynomial time and the classical algorithms presented for it are due to Prim [21], 
Kruskal [18] and Borüvka [3]. The history of this problem is presented in the work of 
Graham and Hell [11]. A survey of the MST problem and algorithms is presented in 
the paper of Bazlamaçci and Hindi [2]. 

The MST problem is polynomial, but constraints often render it NP-hard, as de-
scribed by Garey and Johnson [9]. Examples include the degree-constrained minimum 
spanning tree, the maximum-leaf spanning tree, and the shortest-total-path-length 
spanning tree problems. 

Another difficult variant of this problem is the Multi-criteria Minimum Spanning 
Tree, mc-MST. Given a graph G = (N,E), a vector of non negative weights 
wij = ( 1

ijw ,..., k
ijw ), k > 1, is assigned to each edge (i,j) ∈ E. Let S be the set of all pos-

sible spanning trees, T = (NT,ET), of G and W = (W1,..., Wk), where 

Wq = 
∈ TEji

q
ijw

),(

, q=1,..,k. 

The problem seeks S* ⊆ S, such that T*∈ S* if and only if ∃/ T ∈ S, such that T 
T*. In this work the biobjective problem is considered, although the proposed algo-

rithm can be adapted to consider k> 2 objectives. 
An important application of the mc-MST with two objectives is in the area of net-

work design, where the edge weights can be associated, for instance, to reliability re-
strictions and installation costs. 

Aggarwal et al. [1] showed that the 0-1 knapsack problem can be polynomially re-
duced to the bicriterion spanning tree. Therefore, the biobjective spanning tree prob-
lem belongs to the NP-hard class. 

Recently, a number of works have been dedicated to this problem [16], [23], [26], 
[27]. Among the heuristic approaches presented for the problem, two evolutionary al-
gorithms were introduced by Zhou and Gen [27] and Knowles and Corne [16]. 

Zhou and Gen[27] present a genetic algorithm which solution representation is 
based upon Prüfer’s code [22]. The algorithm is applied to instances with n between 
10 and 50 and a comparison is done with an enumeration method proposed in the 
same work. Later, Knowles and Corne [17] showed that the enumeration algorithm 
was not correct.  

Knowles and Corne [16] present the algorithm AESSEA (Archived Elitist Steady 
State Evolutionary Algorithm) in two versions: AESSEA+Prüfer and AESSEA+ 
Direct/RPM. The first utilizes the Prüfer method to encode solutions and the operators 
suggested in the work of Zhou and Gen[27]. The latter utilizes versions of the encod-
ing and operators presented by Raidl [24] for the degree constrained minimum span-
ning tree problem. The algorithms are tested in a set of instances with n ranging from 
10 and 50. The experiments show that the second version of AESSEA is more effi-
cient than the first version. 

A discussion of representations for minimum spanning tree problems is presented 
by Raidl [24] and Raidl and Julstrom [25]. 
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3   The Algorithm 

The method proposed in this paper to solve the biobjective MST is a genetic algo-
rithm hybridized with a tabu search procedure. The population, with size #size_pop, is 
generated in two steps. At first, at most #max_rmckrus individuals are generated with 
a random greedy method based upon Kruskal’s algorithm for the single-objective 
MST [18]. The other part of the population is generated with the RandomWalk 
method [24]. 

Kruskal’s algorithm is modified to deal with edges with two weights by means of a 
scalarizing vector λ. Thus the two weights of each edge (i,j) are replaced by a single 
value resultant from the inner product λwij. The version of Kruskal’s algorithm im-
plemented in this work is based upon the constructive phase of GRASP [8] where, for 
each decision step, a restricted candidate list, RCL, is formed and an element of this 
list is randomly chosen to be added to the solution. A high level pseudo-code of the 
algorithm r-mc-Kruskal is given in the following. It receives two parameters: the sca-
larizing vector λ and a random number, num, generated in the interval [0,0.1]. The 
edges are sorted in non-decreasing order of their values (scalarized weights) in a list 
L. Let e1 the edge with the minimum associated value a1, then the restricted candidate 
list is built with edges ej such that their associated values aj  (1+num)a1. The algo-
rithm, iteratively, constructs this list, chooses randomly an edge of the RCL and re-
moves this edge from L. If a cycle is not created with the inclusion of the chosen 
edge, then it is add to the solution. The algorithm stops when a spanning tree is  
obtained.  

procedure r-mc-Kruskal(λ,num) 

 L ← sort(E,λ) 

 repeat  

    w ← weight of the first edge of L 

    RCL ← restricted_list(L,w,num) 

    e ← random_choice(RCL)  

    if (Sol ∪ {e}) is acyclic 

    then 

       Sol ← Sol ∪ {e} 

    L ← L\{e} 

   until (|Sol| = n-1) 

A fixed number of different scalarizing vectors, #max_rmckrus, generates solutions 
for the initial population. If the same solution is generated more than once (by differ-
ent scalarizing vectors) only one of them remains in the population. 
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The memetic algorithm keeps an archive with non-dominated solutions, Global_Arc. 
The number of non-dominated solutions in this archive is not limited. Since a solution is 
generated the algorithm checks Global_Arc and if it is necessary, the archive is updated 
with the new solution. If the new generated solution, s, is non-dominated in relation to 
the solutions in Global_Arc, it is added to the archive. If s dominates any solutions in 
Global_Arc, then those are removed.  

Different scalarizing vectors are generated and passed to r-mc-Kruskal. The values 
of λ’s components varies between (0,1) and (1,0) in intervals with fixed size given by 
1/#max_rmckrus. 

Unlike mc-Prim [16], r-mc-Kruskal is not guaranteed to generate only Pareto opti-
mal solutions, since the edge with the lowest assigned value is not necessarily chosen 
during the iterations. However, this method is able to create non supported efficient 
solutions, due to the same reason. 

The pseudo-code of the memetic algorithm, Mem-MC-MST is given in the follow-
ing. Individuals are encoded with the direct representation presented by Raidl [24]. 
The algorithm runs for a fixed number of iterations, #max_gen. At the beginning of 
each iteration, a tabu search procedure is called for the whole population. This search 
procedure is described below.  An auxiliary population, P’, initially empty, is created 
to keep the offspring of the current generation.  Each generation, #size_pop children 
are created. 

The selection scheme is a variation of the binary tournament [10]. Two pairs of in-
dividuals are randomly chosen from the current population, each of them to compete 
in one criterion. That is, the first and second parents of a given child are the winners 
of the first and second tournaments in respect to one and other criterion. This is im-
plemented in function binary_tournament(). 

Parents are mated by means of the edge-crossover [24], generating one offspring. 
The inclusion of the new generated individual in P’ is decided regarding two  

conditions. First, the solution encoded on the individual must be not dominated by the 
solutions of Global_Arc. Function belong(x,arc) verifies if a solution x is non-
dominated with respect to the solutions of the file arc, returning a “true” value if it 
occurs. Second, the individual must be in a less crowd grid location than both parents. 
Function m_grid(arc,x,y) returns a “true” value if solution x is in a less crowd region 
with respect to the solutions of arc than solution y. This strategy was introduced by 
Knowles and Corne [15], where it is described in details. If those conditions are satis-
fied then Global_Arc is updated with the new offspring in function update(). Other-
wise, the offspring is discarded and a new tentative is done. At most, #max_offsp  
tentatives are tried. If no offspring satisfies those conditions, a solution of Global_Arc 
is chosen at random and copied to offspring. The offspring is included in the auxiliary 
population.  

When P’ is complete, it replaces the current population. Finally, the algorithm veri-
fies convergence by checking if Global_Arc has not been updated for #max_it itera-
tions. If it is the case, then half of the current population is replaced by new solutions 
generated by the RandomWalk method [24]. The substituted parcel is chosen at ran-
dom. The following summarizes the memetic algorithm. 
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Algorithm Mem-MC-MST 

P ← generate_pop(#max_rmckrus,#size_pop) 

for i ← 1 to #max_gen do 

  for each p ∈ P do 

    Local_Arc ← {s | s ∈ Global_Arc and s / p} 

    p ← tabu_search(p,Local_Arc) 

  end_for 

  P’ ← {} 

  for j ←1 to #size_pop do 

    q ← 0 

    do  

      Choose at random p1, p2, p3, p4 from P 

      parent1 ← binary_tournament(p1,p2,objective_1) 

      parent2 ← binary_tournament(p3,p4,objective_2) 

      offspringj ← crossover(parent1,parent2) 

      if belong(offspringj,Global_Arc) or 
(m_grid(Global_Arc,  offspringj,parent1) and   
m_grid(Global_Arc,offspringj,parent2)), then 

        q ← #max_offsp + 1 

        update(Global_Arc,offspringj)  

      else q ← q + 1 

    while(q < #max_offsp) 

    if q = #max_offsp, then  

       offspringj ← random_choice(Global_Arc) 

    P’ ← P’∪ {offspringj} 

  end_for 

  P ← P’ 

  if |Global_Arc| does not change in #max_it itera-
tions, then Diversify(P) 

end_for 

return(Global_Arc) 
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procedure tabu_search(s,Local_Arc) 

tabu_list ← {} 

repeat 

 r ← 0 

 do 

r ← r+1 

Choose at random a pair of edges (vi,vi+1),(vj,vj+1) 
from s 

remove((vi,vi+1),(vj,vj+1)) from s   

relink(vi,vj,vi+1,vj+1), producing s’  

if s’ s then s ← s’ 

else 

if ((((vi,vj) ∉ tabu_list) and ((vk,vr)∉ tabu_list)) 

           and m_grid(Local_Arc,s’,s)) then   

      s ← s’ 

  while ( r < #max_neighbors ) and ( s not modified ) 

  if s was modified then 

include(tabu_list,(vi,vj),(vk,vr),#tabutenure) 

update(Local_Arc,s) 

update(Global_Arc,s) 

 until ((#max_tabu iterations) or (s not modified)) 
 
The tabu search procedure receives two parameters: a solution s and an archive 

with the solutions of Global_Arc that do not dominate s. 
The neighborhood structure considers s’ a neighbor of solution s, if s’ is generated 

by the removal of two edges from s, (vi,vi+1) and (vj,vj+1), i+1<j, and the re-linking of 
those terminal vertices. There is only one way to re-link the terminal vertices and it is 
implemented in function relink(). The function checks whether the inclusion of edge 
(vi,vj) creates a cycle or not. If a cycle is not created then edges (vi,vj) and (vi+1,vj+1) 
are added, otherwise the edges included in the solution are (vi,vj+1) and (vi+1,vj).  

If s’ dominates s, then s is updated with the new current solution. Otherwise, the 
algorithm verifies if none of the two edges that entered in s’ have a “tabu” status and 
if s’ is in a less crowd region of the location grid regarding the solutions in Lo-
cal_Arc. If it is the case, then s is also updated with s’. 

To speed the process, on each step, at most #max_neighbors solutions are gener-
ated and two edges that leave a certain solution s are chosen at random.  
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If s is modified then the tabu list, tabu_list, is updated with the edges that were re-
moved from s. These edges stay with a “tabu” status for #tabutenure iterations. If 
necessary, the archives of solutions are also updated. 

4   Computational Experiments 

The proposed algorithm was compared with the algorithm called 
AESSEA+Direct/RPM presented by Knowles and Corne [16]. The algorithm was im-
plemented in C and both algorithms of the computational test ran on a Pentium IV 
(2.8 GHz and 1 Gb of RAM) with Linux. The algorithms were applied to thirty-nine 
instances generated in accordance with the method described in the work of Knowles 
[14]. Three groups of thirteen instances belonging to the classes concave, correlated 
and anti-correlated were generated as complete graphs with two objectives. Each class 
has an instance with n = 10, 25 and 50, and two instances with n = 100, 200, 300, 400 
and 500. The correlated and anti-correlated instances require a correlation factor α 
and the concave instances require two parameters, ζ and η, to be generated. Table 1 
summarizes the parameters utilized to generate the set of test instances. 

Table 1. Parameters to generate the instances for the computational experiment 

Concave Correlated 
Anti-

correlated Instances 
ζ η α α 

10 0.1   0.25 0.7 -0.7 
25 0.05   0.2 0.7 -0.7 
50 0.03   0.125 0.7 -0.7 
100_1  0.01   0.02 0.3 -0.3 
100_2  0.02   0.1 0.7 -0.7 
200_1  0.05   0.2 0.3 -0.3 
200_2 0.08   0.1 0.7 -0.7 
300_1  0.03   0.1 0.3 -0.3 
300_2 0.05   0.125 0.7 -0.7 
400_1 0.025  0.125 0.3 -0.3 
400 _2 0.04  0.2 0.7 -0.7 
500_1 0.02   0.1 0.3 -0.3 
500_2 0.03   0.15 0.7 -0.7 

The parameters for AESSEA reported by its authors [16] were utilized in the ex-
periment. The following parameters were utilized in Mem-MC-MST: 
#max_rmckrus = 110, #size_pop = 150, #max_gen = 40, #max_offsp = 10, 
#max_it = 6, #max_neighbors = 5, #max_tabu= 30, #tabutenure = 5. The archive with 
non-dominated solution has unlimited size and the adaptive grid has 1024 positions. 
Ten independent runs of each algorithm were done for each instance. 

The comparison of the sets of solutions generated by each algorithm was done with 
basis on the binary additive ε-indicator, Iε+[28]. Given two sets of solutions A and B, a 
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value Iε+(A,B) < 0, indicates that every solution of B is strictly dominated by at least 
one solution of A. Values Iε+(A,B)  0 and Iε+(B,A) > 0, indicates that every solution of 
B is weakly dominated by at least one solution of A. Values Iε+(A,B) > 0 and 
Iε+(B,A) > 0, indicates that neither A weakly dominates B nor B weakly dominates A. 
The results of the comparisons are showed in table 2 for correlated instances, table 3 
for anti-correlated instances and table 4 for concave instances. Columns of the three 
tables show the instance, the indicators Iε+(A,B) and Iε+(B,A), where A denotes Mem-
MC-MST and B denotes AESSEA, the runtime and the number non-dominated solu-
tions found by both algorithms. 

From the thirteen instances of the class correlated, the proposed algorithm strictly 
dominates AESSEA in all instances with n = 100,…, 500. For instances with n = 25 
and 50, Mem-MC-MST weakly dominates the other algorithm and for the instance 
with n = 10, the performance of the algorithms is incomparable. Runtimes of the pro-
posed memetic algorithm are, in the majority, much smaller than the other algorithm. 
Moreover, the number of non-dominated solutions generated by the proposed algo-
rithm is superior to the other. In average, the proposed algorithm finds six times more 
non-dominated solutions and runs in a computational time eleven times less than the 
other algorithm, regarding the class of correlated instances. 

Table 2. Comparison of Mem-MC-MST and AESSEA on correlated instances 

Mem-MC-MST AESSEA 
Instance Iε+(A,B) Iε+(B,A) Time 

(s) 
#solutions Time  

(s) 
#solutions 

10 0.0000 0.0000 2.97 24 4.42 24 
25 0.0000 0.0107 7.40 53 4.92 51 
50 0.0000 0.1381 26.68 412 6.70 104 
100_1  -0.1439 0.6222 45.83 620 7.95 119 
100_2  -0.0609 0.3335 55.48 669 7.55 99 
200_1  -0.2362 1.0316 88.31 710 50.90 155 
200_2 -0.1485 0.6006 90.12 667 50.92 84 
300_1  -0.3516 1.7338 150.60 753 556.02 79 
300_2 -0.2566 1.3532 140.94 616 525.62 77 
400_1 -0.4813 2.2925 212.41 707 3185.00 84 
400 _2 -0.2596 1.6500 212.62 595 3193.55 50 
500_1 -0.3576 2.3219 308.34 707 5666.54 159 
500_2 -0.3774 1.2539 309.11 608 5675.69 101 

For the anti-correlated instances, the proposed algorithm strictly dominates 
AESSEA in seven instances, is weakly dominated by the other algorithm on the in-
stance with n = 10, and for the remaining instances the performance of both algo-
rithms is incomparable.  In average, the proposed algorithm finds three times more 
non-dominated solutions than the other algorithm and spends 50% less time. 
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Table 3. Comparison of Mem-MC-MST and AESSEA on anti-correlated instances 

Mem-MC-MST AESSEA 
Instance Iε+(A,B) Iε+(B,A) Time 

(s) 
#solutions Time (s) #solutions 

10 0.0275 0.0000 33.15 109 5.31 111 
25 0.1499 0.1923 144.03 587 12.94 414 
50 0.0419 0.6827 274.16 944 23.05 412 
100_1  -0.2058 1.9306 325.51 980 23.21 376 
100_2  -0.1052 1.9886 578.59 1062 28.26 393 
200_1  -0.1082 2.6343 726.97 1215 69.95 305 
200_2 0.0168 3.2005 1136.79 1307 79.31 476 
300_1  -0.2191 4.3289 991.59 1243 542.96 366 
300_2 0.0818 4.9293 1456.53 1327 604.51 357 
400_1 -0.7082 5.4709 1351.85 1442 2472.03 326 
400 _2 0.0219 6.6840 1946.63 1381 2488.57 431 
500_1 -0.6249 6.5998 1330.17 1440 6712.68 436 
500_2 -0.0962 6.6972 1999.35 1543 6456.46 461 

Finally, for the concave instances, the proposed algorithm strictly dominates AESSEA 
in all instances with n =200,…,500, weakly dominates the other algorithm on the in-
stance 100_1, and for the remaining instances the performance of both algorithms is  
incomparable.  In average, the proposed algorithm finds 65% more non-dominated solu-
tions than the other algorithm and spends 3 times less computational time. 

Table 4. Comparison of Mem-MC-MST and AESSEA on concave instances 

Mem-MC-MST AESSEA 
Instance Iε+(A,B) Iε+(B,A) Time 

(s) 
#solutions Time  

(s) 
#solutions 

10 0.0000 0.0000 4.63 46 4.61 46 
25 0.0078 0.0132 21.97 322 6.68 239 
50 0.0063 0.0315 25.74 415 11.57 284 
100_1  0.0000 0.0083 37.94 392 15.88 313 
100_2  0.0023 0.0816 34.13 426 14.32 248 
200_1  -0.0329 0.2231 69.75 343 56.83 177 
200_2 -0.0005 0.0315 86.03 319 57.71 238 
300_1  -0.0354 0.2271 120.64 360 557.82 170 
300_2 -0.0278 0.1545 117.65 272 563.52 208 
400_1 -0.0462 0.2860 171.00 340 2155.66 125 
400 _2 -0.0610 0.4353 174.06 352 2246.88 261 
500_1 -0.0519 0.2627 241.23 333 5990.03 172 
500_2 -0.0747 0.3523 247.26 355 6387.97 104 
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5   Conclusions 

This paper presented a new memetic algorithm for the biobjective minimum spanning 
tree problem. A randomized greedy method is proposed to generate part of the initial 
population and tabu search procedure is introduced as an intensification tool for the 
evolutionary algorithm. A variant of the known binary tournament selection scheme is 
utilized in the algorithm. 

The solution set generated by the proposed algorithm is compared with the solution 
set generated by a known algorithm, AESSEA, with basis on a general indicator, the 
binary additive ε-indictor. 

The results of the computational experiments show that the proposed algorithm 
performs better than the other algorithm, regarding solution quality, mainly in large 
instances. In average, the algorithm also finds a higher number of solutions and runs 
in less time than the comparison algorithm. 

As future works, the authors intend to investigate the use of other neighborhood 
structures for the tabu search methods, examines extensions of the selection scheme to 
problems with more objectives and extend the proposed approach to the degree con-
strained multiobjective minimum spanning tree problem. 
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Abstract. Many applications involve matching two graphs in order to
identify their common features and compute their similarity. In this pa-
per, we address the problem of computing a graph similarity measure
based on a multivalent graph matching and which is generic in the sense
that other well known graph similarity measures can be viewed as special
cases of it. We propose and compare two different kinds of algorithms:
an Ant Colony Optimization based algorithm and a Reactive Search. We
compare the efficiency of these two algorithms on two different kinds of
difficult graph matching problems and we show that they obtain com-
plementary results.

1 Introduction

Graphs are often used to model structured objects: vertices represent object
components while edges represent binary relations between components. For ex-
ample, graphs are used to model images [3, 5], design objects [10], molecules
or proteins [1], course timetables [9]. In this context, object recognition, clas-
sification and identification involve comparing graphs, i.e., matching graphs to
identify their common features [11]. This may be done by looking for an exact
graph or subgraph isomorphism in order to show graph equivalence or inclusion.
However, in many applications, one looks for similar objects and not identical
ones and exact isomorphisms cannot be found. As a consequence, error-tolerant
graph matchings such as the maximum common subgraph and the graph edit
distance have been proposed [6, 7, 8, 11]. Such matchings drop the condition that
the matching must preserve all vertices and edges: the goal is to find a "best"
matching, i.e., one which preserves a maximum number of vertices and edges.

Most recently, three different papers ([3, 5, 10]) proposed to go one step fur-
ther by introducing multivalent matchings, where a vertex in one graph may be
matched with a set of vertices of the other graph in order to associate one single
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component of an object to a set of components of another object. This allows
one to compare objects described at different levels of granularity such as under-
or over- segmented images [3], or a model of an image having a schematic aspect
with real and over-segmented images [5].

We more particulary focus on the multi-labeled graph similarity measure of
[10] as it has been shown in [20] that it is more general than the two other ones
proposed in [3, 5]. Indeed, it is parameterized by similarity functions that allow
one to easily express problem-dependent knowledge and constraints.

In section 2, we briefly present the generic graph similarity measure of [10]. In
section 3 and 4, we propose two algorithms based on two different approaches for
computing this graph similarity measure. The first one is based on Ant Colony
Optimization (ACO) and the second one is based on Reactive Search (RS). In
section 5, we experimentally compare the two proposed algorithms on two kinds
of graph matching problems. Finally, we conclude on the complementarity of
these two algorithms and we discuss some further work.

2 A Generic Similarity Measure for Multi-labeled Graphs

Definition of Multi-labeled Graphs. A directed graph is defined by a couple
G = (V, E), where V is a finite set of vertices and E ⊆ V × V is a set of
directed edges. Vertices and edges may be associated with labels that describe
their properties. Without loss of generality, we assume that each vertex and each
edge has at least one label. Given a set LV of vertex labels and a set LE of edge
labels, a multi-labeled graph is defined by a triple G = 〈V, rV , rE〉 such that:

– V is a finite set of vertices,
– rV ⊆ V ×LV is a relation associating labels to vertices, i.e., rV is the set of

couples (vi, l) such that vertex vi is labeled by l,
– rE ⊆ V × V ×LE is a relation associating labels to edges, i.e., rE is the set

of triples (vi, vj , l) such that edge (vi, vj) is labeled by l. Note that the set
of edges of the graph can be defined by E = {(vi, vj)|∃l, (vi, vj , l) ∈ rE}.

Similarity Measure. We now briefly describe the graph similarity measure
introduced in [10]. We refer the reader to the original paper for more details.

The similarity measure is computed with respect to a matching of the vertices
of the two graphs. We consider here a multivalent matching, i.e., each vertex
of one graph is matched with a –possibly empty– set of vertices of the other
graph. More formally, a multivalent matching of two multi-labeled graphs G =
〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉 is a relation m⊆V ×V ′ which contains every
couple (v, v′) ∈ V × V ′ such that vertex v is matched with vertex v′.

Once a multivalent matching is defined, the next step is to identify the set of
features that are common to the two graphs with respect to this matching. This
set contains all the features from both G and G′ whose vertices (resp. edges) are
matched by m to at least one vertex (resp. edge) that has the same label. More
formally, the set of common features G m G′ of two graphs G = 〈V, rV , rE〉 and
G′ = 〈V ′, rV ′ , rE′〉, with respect to a matching m ⊆ V ×V ′, is defined as follows:
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G �m G′ =̇ {(v, l) ∈ rV | ∃(v, v′) ∈ m, (v′, l) ∈ rV ′}
∪ {(v′, l) ∈ rV ′ | ∃(v, v′) ∈ m(v), (v, l) ∈ rV }
∪ {(vi, vj , l) ∈ rE | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (v′

i, v
′
j , l) ∈ rE′}

∪ {(v′
i, v

′
j , l) ∈ rE′ | ∃(vi, v

′
i) ∈ m,∃(vj , v

′
j) ∈ m (vi, vj , l) ∈ rE}

Given a multivalent matching m, we also have to identify the set of split
vertices, i.e., the set of vertices that are matched to more than one vertex, each
split vertex v being associated with the set sv of its matched vertices:

splits(m) = {(v, sv) | v ∈ V, sv = {v′ ∈ V ′|(v, v′) ∈ m}, |sv| ≥ 2}
∪ {(v′, sv′) | v′ ∈ V ′, sv′ = {v ∈ V |(v, v′) ∈ m}, |sv′ | ≥ 2}

The similarity of two graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉 with
respect to a matching m is then defined by:

simm(G, G′) =
f(G �m G′) − g(splits(m))

f(rV ∪ rV ′ ∪ rE ∪ rE′)
(1)

where f and g are two functions that are defined to weight features and splits,
depending on the considered application.

Finally, the similarity sim(G, G′) of two graphs G = 〈V, rV , rE〉 and G′ =
〈V ′, rV ′ , rE′〉 is the greatest similarity with respect to all possible matchings, i.e.,

sim(G, G′) = max
m⊆V ×V ′

simm(G, G′)

Note that the denominator of formula (1) does not depend on the matching
m —this denominator is introduced to normalize the similarity value between
zero and one. Hence, it will be sufficient to find the matching m that maximizes
the score function below:

score(m) = f(G  m G′)− g(splits(m))

Using this Graph Similarity Measure to Solve Different Graph Match-
ing Problems. Thanks to the functions f and g of formula (1), the graph simi-
larity measure of [10] is generic. [20] shows how this graph similarity measure can
be used to solve many different graph matching problems such as the (sub)graph
isomorphism problem, the graph edit distance, the maximum common subgraph
problem and the multivalent matching problems of [5] and [10].

The graph matching problem has been shown to be NP -hard in [20]. A com-
plete algorithm has been proposed for computing the matching which maximizes
formula (1) in [10]. This kind of algorithm, based on an exhaustive exploration
of the search space [16] combined with pruning techniques, guarantees solution
optimality. However, this algorithm is limited to very small graphs (having less
than 10 vertices in the worst case). Therefore, incomplete algorithms, that do
not guarantee optimality but have a polynomial time complexity, appear to be
good alternatives.
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3 ACO for the Graph Matching Problem

The ACO (Ant Colony Optimization) meta-heuristic is a bio-inspired approach
[12, 13] that has been used to solve many hard combinatorial optimization prob-
lems. The main idea is to model the problem to solve as a search for an optimal
path in a graph –called the construction graph– and to use artificial ants to
search for ‘good’ paths. The behavior of artificial ants mimics the behavior of
real ones: (i) ants lay pheromone trails on the components of the construction
graph to keep track of the most promising components, (ii) ants construct so-
lutions by moving through the construction graph and choose their path with
respect to probabilities which depend on the pheromone trails previously laid,
and (iii) pheromone trails decrease at each cycle simulating in this way the
evaporation phenomena observed in the real world.

In order to solve graph matching problems, we have proposed in [18] a first
ACO algorithm called ANT-GM (ANT-Graph Matching). However, if this algo-
rithm appeared to be competitive with tabu search on sub-graph isomorphism
problems, it was clearly outperformed on multivalent graph matching problems.
The algorithm presented bellow called ANT-GM’06 improves ANT-GM with respect
to the following points: (i) we consider a new heuristic function in the defini-
tion of the transition probability, (ii) we consider a new pheromonal strategy,
and (iii) we introduce a local search procedure to improve solutions constructed
by ants.

Algorithmic Scheme. At each cycle, each ant constructs a complete matching
in a randomized greedy way. Once every ant has generated a matching, a local
search procedure takes place to improve the quality of the best matching of the
cycle. Pheromone trails are updated according to this improved matching. This
process stops iterating either when an ant has found an optimal matching, or
when a maximum number of cycles has been performed.

Contrary to the algorithm introduced in [18], ANT-GM’06 follows the Max-
Min Ant System[21]: we explicit impose lower and upper bounds τmin and τmax

on pheromone trails (with 0 < τmin < τmax). The goal is to favor a larger
exploration of the search space by preventing the relative differences between
pheromone trails from becoming too extreme during processing. Also and in
order to achieve a higher exploration of the search space at the first cycles,
pheromone trails are set to τmax at the beginning.

Construction Graph. The construction graph is the graph on which artificial
ants lay pheromone trails. Vertices of this graph are solution components that
are selected by ants to generate solutions. In our graph matching application,
ants build matchings by iteratively selecting couples of vertices to be matched.
Hence, given two attributed graphs G = 〈V, rV , rE〉 and G′ = 〈V ′, rV ′ , rE′〉, the
construction graph is the complete non-directed graph that associates a vertex
to each couple (u, u′) ∈ V × V ′.
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Pheromone Trails. A key point when developing any ACO algorithm is to
decide where pheromone trails should be laid and how they should be exploited
and updated. In our case, we may consider two different possibilities:

– the first one turns into laying pheromone on the vertices of the construction
graph. So, the amount of pheromone on a vertex (u, u′) represents the learnt
desirability to match u with u′ when constructing matchings.

– the second consists in laying pheromone on the edges of the construction
graph. The amount of pheromone on an edge < (u, u′), (v, v′) > represents
the learnt desirability to match together u with u′ and v with v′ when con-
structing matchings.

Experimental results presented in [18] have been obtained with the second
strategy, that appears to be the best-performing one on the maximum clique
problem [19] and multiple knapsack problem [2]. Since then, we have compared
this second strategy with the first one, and experiments showed us that when
we choose to lay pheromone on vertices (instead of edges), better results are
obtained, also the algorithm is much less time consuming (pheromone laying
and evaporation has a linear complexity with respect to the number of vertices
of the construction graph and not a quadratic one).

So, in ANT-GM’06, pheromone is laid on vertices and not on edges like in the
initial version of ANT-GM. The amount of pheromone on a vertex (u, u′) will be
noted τ(u, u′).

Matching Construction by Ants. At each cycle, each ant constructs a com-
plete matching: starting from an empty matching m = ∅, by iteratively adding
couples of vertices that are chosen within the set cand = {(u, u′) ∈ V × V ′−m}.
As usually in ACO algorithm, the choice of the next couple to be added to m
is done with respect to a probability that depends on pheromone and heuristic
factors. More formally, given a matching m and a set of candidates cand, the
probability pm(u, u′) of selecting (u, u′) ∈ cand is:

pm(u, u′) =
[τ(u, u′)]α · [ηm(u, u′)]β∑

(v,v′)∈cand

[τ(v, v′)]α · [ηm(v, v′)]β
(2)

where:

– τ(u, u′) is the pheromone factor (when choosing the first couple, τm(u, u′) =
1, so that the probability only depends on the heuristic factor), and

– ηm(u, u′) is a heuristic factor that aims at favoring couples that most increase
the score function, i.e., ηm(u, u′) = score(m ∪ {(u, u′)})− score(m).

– α and β are two parameters that determine the relative importance of the
two factors.

Ants stop adding new couples to the matching when the addition of every
candidate couple decreases the score function or when the score function has not
been increased since the last three iterations.
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Local Search Procedure. The best performing ACO algorithms for many
combinatorial problems are hybrid algorithms that combine probabilistic solu-
tion construction by a colony of ants with local search. In a same perspective,
we have tried to improve the performance of ANT-GM’06 by coupling it with a
local search procedure. In our case, we have chosen a local search which achieves
a ‘good’ compromise between quality and time consuming. Once every ant has
constructed a matching, we try to improve the quality of the best matching con-
structed during the cycle as follows: the three worse couples of the matching are
removed from it, and the resulting matching is completed in a greedy way, i.e.,
by iteratively adding couples of vertices that most increase the score function.
This local search process is iterated until no more improvement is obtained.

Note that the ‘goodness’ of a couple is judged according to its contribution
in our score function, and couples to be removed at each step of a local search
improvement are couples which have not already been removed.

Pheromone Updating Step. Once each ant has constructed a matching,
and the best of these matchings has been improved by local search, pheromone
trails are updated according to the Max-Min Ant System. First, evaporation is
simulated by multiplying every pheromone trail by a pheromone persistance rate
ρ such that 0 ≤ ρ ≤ 1. Then, the best ant of the cycle deposits pheromone. More
precisely, let mk be the best matching (with respect to the score function) built
during the cycle and improved by local search, and mbest be the best matching
built since the beginning of the run (including the current cycle), the quantity
of pheromone laid is inversely proportional to the gap of score between mk and
mbest, i.e. it is equal to 1/(1 + score(mbest)− score(mk)).

As, we have chosen to put pheromone on the vertices of the construction
graph, the quantity of pheromone to be added is deposited on each couple of
vertices (u, u′) in mk.

4 Reactive Search for the Graph Matching Problem

Greedy Algorithm. [10] proposed a greedy algorithm to solve the graph
matching problem. We briefly describe it because it is used as a starting point
of our Reactive Search algorithm. More information can be found in [10]. The
algorithm starts from an empty matching m = ∅, and iteratively adds to m cou-
ples of vertices chosen within the set of candidate couples cand = V × V ′ −m.
This greedy addition of couples to m is iterated until m is locally optimal, i.e.,
until no more couple addition can increase the similarity. At each step, the
couple to be added is randomly chosen within the set of couples that most in-
crease the score function. This greedy algorithm has a polynomial time complex-
ity of O((|V | × |V ′|)2), provided that the computation of the f and g functions
have linear time complexities with respect to the size of the matching. As a
counterpart of this rather low complexity, this algorithm never backtracks and
is not complete.
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Local Search. The greedy algorithm of [10] returns a "locally optimal" match-
ing in the sense that adding or removing one couple of vertices to this matching
cannot improve it. However, it may be possible to improve it by adding and/or
removing more than one couple to this matching. A local search [14, 15] tries
to improve a solution by locally exploring its neighborhood: the neighbours of
a matching m are the matchings which can be obtained by adding or removing
one couple of vertices to m:

∀m ∈ ℘(V × V ′), neighbourhood(m) = {m ∪ {(v, v′)}|(v, v′) ∈ (V × V ′)−m}
∪ {m− {(v, v′)}|(v, v′) ∈ m}

From an initial matching, computed by the greedy algorithm, the search space is
explored from neighbour to neighbour until the optimal solution is found (when
the optimal value is known) or until a maximum number of moves have been
performed. The next neighbour to move on at each step is selected according to
the Tabu meta-heuristic.

Tabu Meta-Heuristic. Tabu search [14, 17] is one of the best known heuris-
tic to choose the next neighbour to move on. At each step, one chooses the
best neighbour with respect to the score function. To avoid staying around lo-
cally optimal matchings by always performing the same moves, a Tabu list is
used. This list has a length k and memorizes the last k moves (i.e., the last k
added/removed couples) in order to forbid backward moves (i.e., to remove/add
a couple recently added/removed). An exception named "aspiration" is added:
if a forbidden move reaches a better matching than the best known matching,
the move is nevertheless done.

Reactive Search. The length k of the tabu list is a critical parameter that is
hard to set: if the list is too long, search diversification is too strong so that the
algorithm converges too slowly; if the list is too short, intensification is too strong
so that the algorithm may be stuck around local maxima and fail in improving
the current solution. To solve this parameter tuning problem, [4] introduced Re-
active Search where the length of the Tabu list is dynamically adapted during
the search. To make the Tabu algorithm reactive, one must evaluate the need for
diversifying the search. When the same matching is explored twice, the search
must be diversified. In order to detect such redundancies, a hashing key is mem-
orized for each explored matching. When a collision occurs in the hash table,
the list length is increased. On the contrary, when there is no collision during
a fixed number of moves, thus indicating that search is diversified enough, one
can reduce the list length. Hashing keys are incrementally computed so that this
method has a negligible added cost.

Iterated Reactive Search. This reactive search process is iterated from dif-
ferent starting points: the total number of allowed moves maxMoves is divided
by k and k executions of reactive search having each one maxMoves/k allowed
moves are launched. Finally, we keep the best matching found during the k
executions.
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5 Experimental Comparison Results of RS and ACO

Problem Instances. We compare our two algorithms on two different sets of
multivalent matching problems: a randomly generated one and a set of seven
instances introduced in [5].

Test suite 1. We have used a random graph generator to generate "similar"
pairs of graphs: it randomly generates a first graph and applies some vertex
splitting/merging and some edge and vertex insertion/suppression to build a
second graph which is similar to the first one. When graph components have
many different labels, the best matching is trivially found as nearly all ver-
tices/edges have different labels. Therefore, to obtain harder instances, we have
generated 100 graphs such that all vertices and edges have the same label. These
graphs have between 80 and 100 vertices and between 200 and 360 edges. The
second graph is obtained by doing 5 vertex merging/splitting and 10 edge or ver-
tex insertion/suppression. We define function f of formula (1) as the cardinality
function and function g as a weighted sum:

g(S) = w ∗
∑

(v,sv)∈S

(|sv| − 1) where w is the weight of a split.

The chosen weight w can drastically change the hardness of instances: with a
null weight, problem is trivially solved (one can make as many splitted vertices
as needed to recover labels), whereas, with a high weight, optimal solutions do
not split vertices and problem turns into an univalent graph matching problem.
With intermediate weights, the problem is harder: optimal solutions must do a
balancing between the number of splitted vertices and the number of recovered
labels. We display experimental results obtained for two different "intermedi-
ate" split weights in order to compare the capacity of our algorithms to deal
with splitted vertices. We first consider instances where w = 1, so that optimal
solutions may contain several splits. We also consider instances where w = 3, so
that optimal solutions contain less splitted vertices. We keep only the 13 hardest
instances (i.e., the ones that cannot be solved by the iterated greedy algorithm
of [10]).

Test suite 2. A non-bijective graph matching problem was introduced in [5] to
find the best matching between models and over-segmented images of brains.
Given a model graph G=(V, E) and an image graph G′=(V ′, E′), a matching is
defined as a function φ : V → ℘(V ′) which associates to each vertex of the model
graph G a non empty set of vertices of G′, and such that (i) each vertex of the
image graph G′ is associated to exactly one vertex of the model graph G, (ii)
for some forbidden couples (v, v′) ∈ V ×V ′, v′ must not belong to φ(v), and (iii)
the subgraph induced by every set φ(v) must be connected. A weight sv(vi, v

′
i)

(resp. se(ei, e
′
i)) is associated with each couple of vertices (vi, v

′
i) ∈ V ×V ′ (resp.

of edges (ei, e
′
i) ∈ E × E′). The goal is to find the matching which maximizes a

function depending on these weights of matched vertices and edges.
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One can define functions f and g so that the matching which maximizes
formula (1) corresponds to the best matching as defined in [5]. We refer the
reader to [20] for more details on the definition of these two functions. We have
taken the 7 instances of the non-bijective graph matching problem of [5]. Scheme
graphs have between 10 and 50 vertices while image graphs have between 30 and
250 vertices. For these instances, we compare our two algorithms with LS+, a
randomized construction algorithm proposed by [5] that quickly computes a
set of possible non-bijective graph matchings and improves the best of these
matchings with a local search algorithm until a locally optimal point is reached.
For more details on these instances and on the LS+ algorithm, please refer
to [5].

Experimental Settings for ACO. For ANT-GM’06, we have set the pheromone
factor weight α to 1 and 2 respectively on test suite 1 and test suite 2, the
pheromone persistance rate ρ to 0.98, the heuristic factor weight β to 10, the
maximum number of cycles MaxCycle respectively to 1000 and 2000, the num-
ber of ants nbAnts to 20, the pheromone lower and upper bound τmin and τmax

to 0.01 and 6.
To evaluate the benefit of integrating local search within ANT-GM’06, we dis-

play results obtained without and with local search. We respectively call these
algorithms ANT-GM’06 and ANT-GM’06+LS.

Experimental Settings for RS. Reactive Search needs 5 parameters: the
minimum (min) and the maximum (max) length of the list, the length of ex-
tension (and shortening) diff of the list when a reaction process occurs, the
frequency freq of reduction of the list and the maximum number of allowed
moves nbMoves. The initial length of the list is always set to min. For the two
test suites, max is set to 50, diff is set to 15 and the number of moves is set
to 50000. In order to obtain better results, the two others parameters must be
chosen depending on the considered problem. On instances of test suite 1, min
is set to 15 and freq is set to 5000 whereas on instances of test suite 2, min is
set to 10 and freq is set to 1000. As 50000 moves of RS are performed much
quicker than 1000 cycles of ANT-GM’06, we iterated RS from different calls to
the greedy algorithm. The number of iterations of RS is setted in such a way
that both algorithms spend the same time. Note however that execution of our
reactive local search is deterministic on instances of test suite 2: the weights
used are real numbers and as a consequence couples of vertices are never chosen
randomly. As a consequence, it is useless to use iterated version of RS and we
perform only one execution of RS.

We made at least 20 executions of each algorithm on each instance.

Results. Table 1 displays results on the 13 instances of test suite 1 with splits
weighted to 1. First, we can see that our 3 algorithms seems to be robust in
the sense that their average results are close to their best results on 20 execu-
tions (for 9 of the 13 instances, the average result is equal to the best result).
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Table 1. Results on multivalent graph matching problems with splits weighted to 1.
For each instance, the table reports the number of vertices and edges of the two graphs,
the CPU time limit L for one run of each algorithm (on a Pentium IV 1.7 GHz) and,
for each algorithm, the best score and the average score found over at least 20 runs
and the average time needed (in seconds) to get the best score.

Problem RS ANT-GM’06 ANT-GM’06+LS
Nbr (| V1 |,| E1 |) (| V2 |,| E2 |) L Best Avg T. Best Avg T. Best Avg T.
1 (80, 200) (74, 186) 1512 511 511.00 57 511 511.00 131 512 511.10 140
2 (80, 240) (82, 261) 1415 644 644.00 60 644 644.00 266 644 644.00 239
3 (80, 320) (83, 362) 1445 821 820.97 279 821 820.50 498 822 821.20 660
4 (80, 340) (72, 302) 1174 753 753.00 55 753 753.00 111 753 753.00 130
5 (80, 360) (77, 367) 1139 856 855.97 187 855 855.00 321 855 855.00 249
6 (80, 360) (78, 367) 1196 863 863.00 21 863 863.00 187 864 863.94 565
7 (90, 300) (91, 307) 1670 762 762.00 98 762 762.00 326 762 762.00 213
8 (90, 320) (87, 310) 1611 780 780.00 51 780 780.00 572 780 780.00 409
9 (90, 320) (90, 339) 1716 816 816.00 69 816 815.45 546 816 815.45 602
10 (100, 260) (96, 263) 2093 697 696.63 628 697 696.90 976 697 697.00 812
11 (100, 300) (100, 304) 2078 780 780.00 148 780 780.00 278 780 780.00 279
12 (100, 320) (98, 331) 2080 828 828.00 46 828 828.00 286 828 828.00 218
13 (100, 360) (99, 371) 2455 915 915.00 90 915 915.00 267 915 915.00 152

Table 2. Results on multivalent graph matching problems with splits weighted to 3.
For each instance, the table reports the number of vertices and edges of the two graphs,
the CPU time limit L for one run of each algorithm (on a Pentium IV 1.7 GHz) and,
for each algorithm, the best score and the average score found over at least 20 runs
and the average time needed (in seconds) to get the best score.

Problem RS ANT-GM’06 ANT-GM’06+LS
Nbr (| V1 |,| E1 |) (| V2 |,| E2 |) L Best Avg T. Best Avg T. Best Avg T.
1 (80, 200) (74, 186) 659 496 496.00 28 496 496.00 132 496 496.00 121
2 (80, 240) (82, 261) 798 624 624.00 26 624 624.00 108 624 624.00 88
3 (80, 320) (83, 362) 896 801 801.00 17 801 801.00 213 801 801.00 218
4 (80, 340) (72, 302) 737 732 732.00 27 732 732.00 185 732 732.00 194
5 (80, 360) (77, 367) 852 846 846.00 198 846 846.00 116 846 846.00 77
6 (80, 360) (78, 367) 855 840 840.00 36 840 840.00 94 840 840.00 67
7 (90, 300) (91, 307) 1140 748 748.00 82 748 748.00 186 748 748.00 150
8 (90, 320) (87, 310) 1079 766 766.00 44 766 766.00 187 766 766.00 187
9 (90, 320) (90, 339) 1127 802 802.00 70 802 802.00 167 802 802.00 163
10 (100, 260) (96, 263) 1346 683 683.00 114 683 682.75 556 683 683.00 354
11 (100, 300) (100, 304) 1466 769 769.00 358 769 769.00 274 769 769.00 285
12 (100, 320) (98, 331) 1463 814 814.00 51 814 814.00 241 814 814.00 201
13 (100, 360) (99, 371) 1528 900 900.00 54 900 900.00 245 900 900.00 243

Also, we can note that RS performs better than ANT-GM’06: it obtains better
result on 1 instance and is always as fast as ANT-GM’06. Integrating local search
within ANT-GM’06 actually improves the solution process so that ANT-GM’06
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Table 3. Results on non-bijective graph matching of [5]. For each instance, the table
reports its name, the number of vertices of the two graphs, the CPU time limit L for one
run of each algorithm (on a Pentium IV 1.7 GHz), the similarities of the best solutions
obtained by LS+[5], RS, ANT-GM’06 without LS and with LS (the best solution, the
average solution found over 20 runs and the average time in seconds).

Problem LS+ RS ANT-GM’06 ANT-GM’06+LS
GM-i (| V1 |, | V2 |) L Sim Sim T. Sim Avg T. Sim Avg T.

5 (10, 30) 18 .5474 .5481 0.9 .5601 .5598 16 .5608 .5604 15
5a (10, 30) 19 .5435 .5529 4.6 .5638 .5638 10 .5645 .5641 7
6 (12, 95) 269 .4248 .4213 0.0 .4252 .4251 211 .4252 .4251 215
7 (14, 28) 13 .6319 .6333 2.1 .6369 .6369 7 .6376 .6369 5
8 (30, 100) 595 .5186 .5210 1.3 .5229 .5226 462 .5232 .5228 229
8a (30, 100) 595 .5222 .5245 1.3 .5263 .5261 456 .5269 .5264 241
9 (50, 250) 6018 .5187 .5199 81.7 .5201 .5201 4133 .5203 .5202 2034

obtains better (resp. worse) results than RS on 3 (resp. 1) instances, whereas they
obtain same results on 9 instances. On these instances, RS and ANT-GM’06+LS
obtain complementary results: ANT-GM’06+LS outperforms RS more frequently
than RS outperforms ANT-GM’06+LS but RS is much quicker than ANT-GM’06+LS,
even when the two algorithms obtain the same results. Finally, note that if one
cycle of ANT-GM’06+LS is more time consuming than one cycle of ANT-GM’06,
ANT-GM’06+LS does not generally need more CPU time than ANT-GM’06 to find
a solution: the local search procedure speed up the convergence of ANT-GM’06
and less cycles are needed to find the best solution.

Table 1 does not show results for the first ANT-GM algorithm described in [18]
but one should note that the new ACO algorithm ANT-GM’06 clearly outperforms
this first one. Actually, on all the considered instances, ANT-GM’06 computes
much better solutions in less CPU time than ANT-GM. For example, on instance
1, the best score found by ANT-GM is 505 and is found in 8648 seconds, whereas
ANT-GM’06 finds a score of 511 in 131 seconds.

Table 2 displays results on the 13 instances of test suite 1 with splits weighted
to 3. On each instance, our three algorithms always find the same best score and
the same average score (except for ANT-GM’06 on one instance). However, RS
finds the solution in shorter times than ANT-GM’06 and ANT-GM’06+LS except
for only two instances. These results show that on these instances, one clearly
has to use our RS algorithm.

On the 7 instances of test suite 2, our three algorithms obtain better results
than LS+, the reference algorithm of [5] (6 instances on 7 are better solved by
RS and 7 instances on 7 are better solved by ACO algorithms). Note that, because
the considered weights are real numbers, an execution of RS is deterministic. As
a consequence, RS is less randomized than for multivalent matching problems,
it quickly converges to "good" matchings but can easily be trapped into local
optimum. So, results show that, as for non-bijective graph matching problems,
ACO gives better results than RS but needs much more time.
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In conclusion, the local search procedure helps ANT-GM’06 to improve the
quality of the results. As a consequence, ANT-GM’06+LS usually obtains better
results but is slower than RS. The time limits allowed to our three algorithms
have been set depending on the ACO algorithms which generaly need a long
time to converge. So, these time limits penalize RS which, within a shorter time,
can generaly find a better solution then ACO algorithms. ANT-GM’06+LS and RS
are complementary: if we need to compute quickly a "good" solution of hard
instances or if instances are easy, we can use RS but if we have more time to
spend on computation or if we want to solve very hard instances, we can use
ANT-GM’06+LS.

6 Conclusion and Further Work

In this paper, we address the problem of computing the generic graph similarity
measure of [10]. We propose and compare two different kinds of algorithms: an
Ant Colony Optimization (ACO) based algorithm boosted with local search and
a Reactive Search based on a tabu local search heuristic. We compare the effi-
ciency of these two algorithms on two different kinds of difficult graph matching
problems. We show that ACO usually obtains better results but is slower than
Reactive Search. These two algorithms are complementary: if we need to com-
pute quickly a "good" solution of hard instances or if instances are easy, we can
use RS but if we have more time to spend on computation or if we want to solve
very hard instances, we can use ACO.

In further work, we would like to compare these algorithms on some other
graph matching problems such as maximum common subgraph problems. For
ACO, we would like to speed up the convergence of the algorithm. This could
be done by using a better local search strategy to repair built matchings. For
RS, we would like to diversify the search. This could be done by using an other
strategy than the elitist greedy algorithm of [10] to choose the starting points
and then, start shorter tabu searches from many starting points.
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2 Thales Research & Technology France, RD 128, F-91767 Palaiseau, France
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Abstract. An original approach, termed Divide-and-Evolve is proposed
to hybridize Evolutionary Algorithms (EAs) with Operational Research
(OR) methods in the domain of Temporal Planning Problems (TPPs).
Whereas standard Memetic Algorithms use local search methods to im-
prove the evolutionary solutions, and thus fail when the local method
stops working on the complete problem, the Divide-and-Evolve approach
splits the problem at hand into several, hopefully easier, sub-problems,
and can thus solve globally problems that are intractable when directly
fed into deterministic OR algorithms. But the most prominent advantage
of the Divide-and-Evolve approach is that it immediately opens up an av-
enue for multi-objective optimization, even though the OR method that
is used is single-objective. Proof of concept approach on the standard
(single-objective) Zeno transportation benchmark is given, and a small
original multi-objective benchmark is proposed in the same Zeno frame-
work to assess the multi-objective capabilities of the proposed method-
ology, a breakthrough in Temporal Planning.

1 Introduction

Artificial Intelligence Planning is a form of general problem solving task which
focuses on problems that map into state models that can be defined by a state
space S, an initial state s0 ⊆ S, a set of goal states SG ⊆ S, a set of actions A(s)
applicable in each state S, and a transition function f(a, s) = s′ with a ∈ A(s),
and s, s′ ∈ S. A solution to this class of models is a sequence of applicable actions
mapping the initial state s0 to a goal state that belongs to SG.

An important class of problems is covered by Temporal Planning which ex-
tends classical planning by adding a duration to actions and by allowing con-
current actions in time [8]. In addition, other metrics are usually needed for
real-life problems to qualify a good plan, for instance a cost or a risk criterion.
A usual approach is to aggregate the multiple criteria, but this relies on highly
problem-dependent features and is not always meaningful. A better solution is
to compute the set of optimal non-dominated solutions – the so-called Pareto
front.

Because of the high combinatorial complexity and the multi-objective fea-
tures of Temporal Planning Problems (TPPs), Evolutionary Algorithms are good
general-purpose candidate methods.

J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 247–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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However, there has been very few attempts to apply Evolutionary Algorithms
to planning problems and, as far as we know, not any to Temporal Planning.
Some approaches use a specific representation (e.g. dedicated to the battlefield
courses of action [15]). Most of the domain-independent approaches see a plan
as a program and rely on Genetic Programming and on the traditional blocks-
world domain for experimentation (starting with the Genetic Planner [17]). A
more comprehensive state of the art on Genetic Planning can be found in [1]
where the authors experimented a variable length chromosome representation.
It is important to notice that all those works search the space of (partial) plans.

It is also now well-known that Evolutionary Algorithms (EAs) can rarely ef-
ficiently solve Combinatorial Optimization Problems on their own, i.e. without
being hybridized, one way or another, with local search ad hoc techniques. The
most successful of such hybridizations use Operational Research methods to lo-
cally improve any offspring that was born from EA variation operators (crossover
and mutation): such algorithms have been termed “Memetic Algorithms” or “Ge-
netic Local Search” [14]. Those methods are now the heart of a whole research
field, as witnessed by the series of WOMA’s (Workshops on Memetic Algorithms)
organized every year now, Journal Special Issues and edited books [10].

However, most memetic approaches are based on finding local improvements
of candidate solutions proposed by the evolutionary search mechanism using
dedicated local search methods that have to tackle the complete problem. In
some combinatorial domains such as Temporal Planning, this simply proves to
be impossible when reaching some level of complexity.

This paper proposes Divide-and-Evolve, borrowing to the Divide-and-Conquer
paradigm for such situations: the problem at hand is sliced into a sequence of
problems that are hopefully easier to solve by OR or other local methods. The
solution to the original problem is then obtained by a concatenation of the
solutions to the different sub-problems.

Next section presents an abstract formulation of the Divide-and-Evolve sche-
me, and starting from its historical (and pedagogical) root, the TGV paradigm.
Generic representation and variation operators are also introduced. Section 3
introduces an actual instantiation of the Divide-and-Evolve scheme to TPPs.
The formal framework of TPPs is first introduced, then the TPP-specific issues
for the Divide-and-Evolve implementation are presented and discussed. Section 4
is devoted to experiments on the transportation Zeno benchmark for both single
and multi-objective cases. The last section opens a discussion highlighting the
limitations of the present work and giving hints about on-going and future work.

2 The Divide-and-Evolve Paradigm

2.1 The TGV Metaphor

The Divide-and-Evolve strategy springs from a metaphor on the route planning
problem for the French high-speed train (TGV). The original problem consists
in computing the shortest route between two points of a geographical landscape
with strong bounds on the curvature and slope of the trajectory. An evolutionary
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algorithm was designed [4] based on the fact that the only local search algorithm
at hand was a greedy deterministic algorithm that could solve only very simple
(i.e. short distance) problems. The evolutionary algorithm looks for a split of
the global route into small consecutive segments such that a local search algo-
rithm can easily find a route joining their extremities. Individuals represent sets
of intermediate train stations between the station of departure and the termi-
nus. The convergence toward a good solution was obtained with the definition
of appropriate variation and selection operators [4]. Here, the state space is the
surface on which the trajectory of the train is defined.

Generalization. Abstracted to Planning, the route is replaced by a sequence
of actions and the “stations” become intermediate states of the system. The
problem is thus divided into sub-problems and “to be close” becomes “to be
easy to solve” by some local algorithm L. The evolutionary algorithm plays the
role of an oracle pointing at some imperative states worth to go trough.

2.2 Representation

The problem at hand is an abstract AI Planning problem as described in the
introduction. The representation used by the evolutionary algorithm is a vari-
able length list of states: an individual is thus defined as (si)i∈[1,n], where the
length n and all the states si are unknown and subject to evolution. States s0

and sn+1 ≡ sG will represent the initial state and the goal of the problem at
hand, but will not be encoded in the genotypes. By reference to the original
TGV paradigm, each of the states si of an individual will be called a station.

Requirements. The original TGV problem is purely topological with no tempo-
ral dimension and reduces to a planning problem with a unique action: moving
between two points. The generalization to a given planning domain requires to
be able to:

1. define a distance between two different states of the system, so that d(S,T )
is somehow related to the difficulty for the local algorithm L to find a plan
mapping the initial state S to the final state T ;

2. generate a chronological sequence of virtual “stations”, i.e. intermediate
states of the system, that are close to one another, si being close to si+1;

3. solve the resulting ”easy” problems using the local algorithm L;
4. “glue” the sub-plans into an overall plan of the problem at hand.

2.3 Variation Operators

This section describes several variation operators that can be defined for the
general Divide-and-Evolve approach, independently of the actual domain of ap-
plication (e.g. TPPs, or the original TGV problem).

Crossover. Crossover operators amounts to exchanging stations between two
individuals. Because of the sequential nature of the fitness, it seems a good idea
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to try to preserve sequences of stations, resulting in straightforward adaptations
to variable-length representation of the classical 1- or 2-point crossover operators.

Suppose you are recombining two individuals (si)1≤?n and (Ti)1≤?m. The
1-point crossover amounts to choosing one station in each individual, say sa and
Tb, and exchanging the second part of the lists of stations, obtaining the two off-
spring (s1, . . . , sa,Tm+1, . . . Tb) and (T1, . . . ,Tb, sn+1, . . . , sn) (2-point crossover
is easily implemented in a similar way). Note that in both cases, the length of
each offspring is likely to differ from those of the parents.

The choice of the crossover points sa and Tb can be either uniform (as done
in all the work presented here), or distance-based, if some distance is available:
pick the first station sa randomly, and choose Tb by e.g. a tournament based on
the distance with sa (this is on-going work).

Mutation. Several mutation operators can be defined. Suppose individual
(si)1≤?n is being mutated:

– At the individual level, the Add mutation simply inserts a new station
snew after a given station (sa), resulting in an n + 1-long list, (s1, . . . , sa,
snew, sa+1, . . . , sn). Its counterpart, the Del mutation, removes a station sa

from the list.
Several improvements on the pure uniform choice of sa can be added and

are part of on-going work, too: in case the local algorithm fails to successfully
join all pairs of successive stations, the last station that was successfully
reached by the local algorithm can be preferred for station sa (in both the
Add and Del mutations). If all partial problems are solved, the most difficult
one (e.g. in terms of number of backtracks) can be chosen.

– At the station level, the definition of each station can be modified –
but this is problem-dependent. However, assuming there exists a station-
mutation operator μS , it is easy to define the individual-mutation MμS

that
will simply call μS on each station si with a user-defined probability pμS

.
Examples of operators μS will be given in section 3, while simple Gaussian
mutation of the (x, y) coordinates of a station were used for the original
TGV problem [4].

3 Application to Temporal Planning

3.1 Temporal Planning Problems

Domain-Independent planners rely on the Planning Domain Definition Language
(PDDL) [13], inherited from the STRIPS model [5], to represent a planning
problem. In particular, this language is used for a competition1 which is held
every two years since 1998. The language has been extended for representing
Temporal Planning Problems in PDDL2.1 [7]. For the sake of simplicity, the
temporal model is often simplified as explained below [18].

1 http://ipc.icaps-conference.org/
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A Temporal PDDL Operator is a tuple o = 〈pre(o), add(o), del(o), dur(o)〉
where pre(o), add(o) and del(o) are sets of ground atoms that respectively denote
the preconditions, add effects and del effects of o, and dur(o) is a rational number
that denotes the duration of o. The operators in a PDDL input can be described
with variables, used in predicates such as (at ?plane ?city).

A Temporal Planning Problem is a tuple P = 〈A, I,O, G〉, where A is a set of
atoms representing all the possible facts in a world situation, I and G are two
sets of atoms that respectively denote the initial state and the problem goals,
and O is a set of ground PDDL operators.

As is common in Partial Order Causal Link (POCL) Planning [19], two
dummy actions are also considered, Start and End with zero durations, the
first with an empty precondition and effect I; the latter with precondition G
and empty effects. Two actions a and a′ interfere when one deletes a precondi-
tion or positive effect of the other. The simple model of time in [16] defines a
valid plan as a plan where interfering actions do not overlap in time. In other
words, it is assumed that the preconditions need to hold until the end of the
action, and that the effects also hold at the end and cannot be deleted during
the execution by a concurrent action.

A schedule P is a finite set of actions occurrences 〈ai, ti〉, i = 1, . . . , n, where
ai is an action and ti is a non-negative integer indicating the starting time of ai

(its ending time is ti + dur(ai)). P must include the Start and End actions, the
former with time tag 0. The same action (except for these two) can be executed
more than once in P if ai = aj for i �= j. Two action occurrences ai and aj overlap
in P if one starts before the other ends; namely if [ti, ti+dur(ai)]∩[tj , tj+dur(aj)]
contains more than one time point.

A schedule P is a valid plan iff interfering actions do not overlap in P and
for every action occurrence 〈ai, ti〉 in P its preconditions p ∈ pre(a) are true at
time ti. This condition is inductively defined as follows: p is true at time t = 0
iff p ∈ I, and p is true at time t > 0 if either p is true at time t − 1 and no
action a in P ending at t deletes p, or some action a′ in P ending at t adds p.
The makespan of a plan P is the time tag of the End action.

3.2 CPT: An Optimal Temporal Planner

An optimal temporal planner computes valid plans with minimum makespan.
Even though an optimal planner was not mandatory (as discussed in section 5),
we have chosen CPT [18], a freely-available optimal temporal planner, for its
temporal dimension and for its constraint-based approach which provide a very
useful data structure when it comes to gluing the partial solutions (see section
2.2). Indeed, since in Temporal Planning actions can overlap in time, the simple
concatenation of sub-plans, though providing a feasible solution, obviously might
produce a plan that is not optimal with respect to the total makespan, even if
the sequence of actions is the optimal sequence. However, thanks to the causal
links and order constraints maintained by CPT, an improved global plan can
be obtained by shifting sub-plans as early as possible in a final state of the
algorithm.
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3.3 Rationale for Using Divide-and-Evolve for Temporal Planning

The reasons for the failure of standard OR methods addressing TPPs come
from the exponential complexity of the number of possible actions when the
number of objects involved in the problem increases. It is known for a long time
that taking into account the interactions between sub-goals can decrease the
complexity of finding a plan, in particular when these sub-goals are independent
[12]. Moreover, computing an ideal ordering on sub-goals is as difficult as finding
a plan (PSPACE-hard), as demonstrated in [11]. The basic idea when using the
Divide-and-Evolve approach is that each local sub-plan (“joining” stations si

and si+1) should be easier to find than the global plan (joining the station of
departure s0 and the terminus sn+1). This will be now demonstrated on the
Zeno transportation benchmark (see http://ipc.icaps-conference.org/).

Table 1 illustrates the decomposition of a relatively difficult problem in the
Zeno domain (zeno14 from IPC-3 benchmarks), a transportation problem with
5 planes (plane1 to plane5) and 10 persons (person0 to person9) to travel
among 10 cities (city0 to city9).

Table 1. State Decomposition of the Zeno14 Instance. (The new location of moved
objects appears in bold.).

Objects Init Station 1 Station 2 Station 3 Station 4 Goal
(station 0) (station 5)

plane 1 city 5 city 6 city 6 city 6 city 6 city 6
plane 2 city 2 city 2 city 3 city 3 city 3 city 3
plane 3 city 4 city 4 city 4 city 9 city 9 city 9
plane 4 city 8 city 8 city 8 city 8 city 5 city 5
plane 5 city 9 city 9 city 9 city 9 city 9 city 8
person 1 city 9 city 9 city 9 city 9 city 9 city 9
person 2 city 1 city 1 city 1 city 1 city 1 city 8
person 3 city 0 city 0 city 2 city 2 city 2 city 2
person 4 city 9 city 9 city 9 city 7 city 7 city 7
person 5 city 6 city 6 city 6 city 6 city 6 city 1
person 6 city 0 city 6 city 6 city 6 city 6 city 6
person 7 city 7 city 7 city 7 city 7 city 5 city 5
person 8 city 6 city 6 city 6 city 6 city 6 city 1
person 9 city 4 city 4 city 4 city 4 city 5 city 5
person 0 city 7 city 7 city 7 city 9 city 9 city 9

Makespan 350 350 280 549 522
Backtracks 1 0 0 195 32
Search time 0.89 0.13 0.52 4.34 1.64
Total time 49.10 49.65 49.78 54.00 51.83

Compression Global Search
Makespan 772 476
Backtracks 0 606,405
Search time 0.01 4,155.41
Total time 0.02 (total : 254.38) 4,205.40
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Analyzing the optimal solution found by CPT-3 it was easy to manually divide
the optimal “route” of this solution in the state space into four intermediate
stations between the initial state and the goal. It can be seen that very few
moves (plane or person) occur between two consecutive stations (the ones in
bold in each column of Table 1). Each sub-plan is easily found by CPT, with
a maximum of 195 backtracks and 4.34 seconds of search time. It should be
noted that most of the time spent by CPT is for pre-processing: this operation
is actually repeated each time CPT is called, but could be factorized at almost
no cost.

Note that the final step of the process is the compression of the five sub-plans
(see section 2.2): it is here performed in 0.02 seconds without any backtracking,
and the overall makespan of the plan is 772, much less than the sum of the
individual makespans of each sub-plan (2051).

To summarize, the recomposed plan, with a makespan of 772, required a total
running time of 254.38 seconds (including only 7.5s of pure search) and 228 back-
tracks altogether, whereas a plan with the optimal makespan of 476 is found by
CPT in 4,205 seconds and 606,405 backtracks. Section 5 will discuss this issue.

3.4 Description of the State Space

Non-temporal States. A natural state space for TPPs, as described at the
beginning of this section, would be the actual space of all possible time-stamped
states of the system. Obviously, the size of such a space is far too big and we
simplified it by restricting the stations to non-temporal states. However, even
with this simplification, not all “non-temporal” states can be considered in the
description of the “stations”.

Limiting the Possible States. First, the space of all possible states grows expo-
nentially with the size of the problem. Second, not all states are consistent w.r.t.
the planning domain. For instance, an object cannot be located at two places at
the same time in a transportation problem – and inferring such state invariants
is feasible but not trivial [6]. Note also that determining plan existence from a
propositional STRIPS description has been proved to be PSPACE-complete [2].

A possible way to overcome this difficulty would be to rely on the local al-
gorithm to (rapidly) check the consistency of a given situation, and to penalize
unreachable stations. However, this would clearly be a waste of computational
resources.

On the other hand, introducing domain knowledge into EAs has been known
for long as the royal road toward success in Evolutionary Computation [9]. Hence,
it seems a more promising approach to add state invariants to the description of
the state space in order to remove the inconsistent states as much as possible.
The good thing is that it is not necessary to remove all inconsistent states
since, in any case, the local algorithm is there to help the EA to spot them –
inconsistent stations will be given poor fitness, and will not survive next selection
steps. In particular, only state invariants involving a single predicate have been
implemented in the present work.
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3.5 Representation of Stations

It was hence decided to describe the stations using only the predicates that
are present in the goal of the overall problem, and to maintain the state
invariants based on the semantics of the problem.

A good example is given in Table 1: the goal of this benchmark instance is
to move the persons and planes in cities listed in the last column. No other
predicate than the corresponding (at objectN cityM) predicates is present in
the goal. Through a user-supplied file, the algorithm is told that only the at
predicates will be used to represent the stations, with the syntactic restrictions
that within a given station, the first argument of an at predicate can appear
only once (at is said to be exclusive with respect to its first argument). The
state space that will be explored by the algorithm thus amounts to a vector of
15 fluents (instantiated predicates) denoting that an item is located in a city (a
column of table 1). In addition, the actual implementation of a station includes
the possibility to “remove” (in fact, comment out) a predicate of the list: the
corresponding object will not move during this sub-plan.

Distance. The distance between two stations should reflect the difficulty for the
local algorithm to find a plan joining them. At the moment, a purely syntactic
domain-independent distance is used: the number of different predicates not
yet reached. The difficulty can then be estimated by the number of backtracks
needed by the local algorithm. It is reasonable to assume that indeed most local
problems where only a few predicates need to be changed from the initial state
to the goal will be easy for the local algorithm - though this is certainly not true
in all cases.

3.6 Representation-Specific Operators

Initialization. First, the number of stations is chosen uniformly in a user-
supplied interval. The user also enters a maximal distance dmax between stations.
A matrix is then built, similar to the top lines of table 1: each line corresponds
to one of the goal predicates, each column is a station. Only the first and last
columns (corresponding to initial state and goal) are filled with values. A num-
ber of “moves” is then randomly added in the matrix, at most dmax per column,
and at least one per line. Additional moves are then added according to another
user-supplied parameter, and without exceeding the dmax limit per column. The
matrix is then filled with values, starting from both ends (init and goal), con-
strained column-wise by the state invariants. A final sweep on all predicates
comments out some of the predicates with a given probability.

Station Mutation. Thanks to the simplified representation of the states
(a vector of fluents with a set of state invariants), it is straightforward to modify
one station randomly: with a given probability, a new value for the non-exclusive
arguments is chosen among the possible values respecting all constraints (includ-
ing the distance constraints with previous and next stations). In addition, each
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predicate might be commented out from the station with a given probability,
like in the initialization phase.

4 First Experiments

4.1 Single Objective Optimization

Our main playground to validate the Divide-and-Evolve approach is that of
transportation problems, and started with the zeno domain as described in
section 3.3. As can be seen in table 1, the description of the stations in zeno
domain involves a single predicate, at, with two arguments. It is exclusive w.r.t.
its first argument. Three instances have been tried, called zeno10, zeno12 and
zeno14, from the simplest to the hardest.

Algorithmic Settings. The EA that was used for the first implementation of
the Divide-and-Evolve paradigm use standard algorithmic settings at the popu-
lation level: a (10, 70)−ES evolution engine (10 parents give birth to 70 children,
and the best 10 among the children become the next parents), the children are
created using 25% 1-point crossover (see section 2.3) and 75% mutation (in-
dividual level), out of which 25% are the Add (resp. Del) generic mutations
(section 2.3). The remaining 50% of the mutations call the problem-specific sta-
tion mutation. Within a station mutation, a predicate is randomly changed in
75% of the cases and a predicate is removed (resp. restored) in each of the re-
maining 12.5% cases. (see section 3.6). Initialization is performed using initial
size in [2, 10], maximum distance of 3 and probability to comment out a predi-
cate is set to 0.1. Note that no lengthy parameter tuning was performed for those
proof-of-concept experiments, and the above values were decided based upon a
very limited set of initial experiments.

The Fitness. The target objective is here the total makespan of a plan – assum-
ing that a global plan can be found, i.e. that all problems (si, si+1) can be solved
by the local algorithm. In case one of the local problems could not be solved, the
individual is declared infeasible and is penalized in such a way that all unfeasible
individuals were worse than any feasible one. Moreover, this penalty is propor-
tional to the number of remaining stations after the failure, in order to provide
a nice slope of the fitness landscape toward feasibility. For feasible individuals,
an average of the total makespan and the sum of the makespans of all partial
problems is used: when only the total makespan is used, some individuals start
bloating, without much consequence on the total makespan thanks to the final
compression that is performed by CPT, but nevertheless slowing down the whole
run because of all the useless repeated calls to CPT.

Preliminary Results. The simple zeno10 (resp. zeno12) instance can be solved
very easily by CPT-2 alone, in less than 2s (resp. 125s), finding the optimal plans
with makespan 453 (resp. 549) using 154 (resp. 27560) backtracks.
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For zeno10, all runs found the optimal solution in the very first generations
(i.e. the initialization procedure always produced a feasible individual that CPT
could compress to the optimal makespan. For zeno12, all runs found a sub-
optimal solution with makespan between 789 and 1222. Note that this final
solution was found after 3 to 5 generations, the algorithm being stuck to this
solution thereafter. The CPU time needed for 10 generations is around 5 hours.

A more interesting case is that of zeno14. First of all, it is worth mentioning
that the present Divide-and-Evolve EA uses as local algorithm CPT version 2, and
this version of CPT was unable to find a solution to zeno14: the results given in
table 1 have been obtained using the (yet experimental and not usable from within
the EA) new version of CPT. But whereas it proved unable to solve the full prob-
lem, CPT-2 could nevertheless be used to solve the hopefully small instances of
zeno14 domain that were generated by the Divide-and-Evolve approach – though
taking a huge amount of CPU time for that. Setting a limit on the number of back-
tracks allowed for CPT was also mandatory to force CPT not to explore the too
complex cases that would have resulted in a never-returning call.

However, a feasible individual was found in each of the only 2 runs we could
run – one generation (70 evaluations) taking more than 10 hours. In the first
run, a feasible individual was found in the initial population, with makespan
1958, and the best solution had a makespan of 773. In the other run, the first
feasible solution was found at generation 3 – but the algorithm never improved
on that first feasible individual (makespan 1356).

Though disappointing with respect to the overall performances of the algo-
rithm, those results nevertheless witness for the fact that the Divide-and-Evolve
approach can indeed solve a problem that could not be solved by CPT alone
(remember that the version of CPT that was used in all experiments is by far
less efficient than the one used to solve zeno14 in section 3.3, and was not able
to solve zeno14 at all.

4.2 A Multi-objective Problem

Problem Description. In order to test the feasibility of the multi-objective ap-
proach based on the Divide-and-Evolve paradigm, we extended the zeno bench-
mark with an additional criterion, that can be interpreted either as a cost, or
as a risk: in the former case, this additional objective is an additive measure,
whereas in the latter case (risk) the aggregation function is the max operator.

The problem instance is shown in Figure 1: the only available routes between
cities are displayed as edges, only one transportation method is available (plane),
and the duration of the transport is shown on the corresponding edge. Risks (or
costs) are attached to the cities (i.e., concern any transportation that either
lands or takes off from that city). In the initial state, the 3 persons and the 2
planes are in City 0, and the goal is to transport them into City 4.

As can be easily computed (though there is a little trick here), there are 3
remarkable Pareto-optimal solutions, corresponding to traversing only one of the
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Fig. 1. The multi-objective Zeno benchmark

3 middle cities. Going through City 1 is fast, but risky (costly), whereas going
through City 3 is slow and safe and cheap.

When all persons go through respectively City 1, City 2 and City 3, the
corresponding values of the makespans and costs in the additive case are (8,
800), (16, 80) and (24, 8), whereas they are, in the max case, (8, 100),
(16, 10) and (24, 1).

Problem Complexity It is easy to compute the number of possible virtual sta-
tions: each one of the 3 persons can be in one of the 5 cities, or not mentioned
(absent predicate). Hence there are 36 = 729 possible combinations, and 729n

possible lists of length n. So even when n is limited to 6, the size of the search
space is approx. 1017 . . .

The Algorithm. The EA is based on the standard NSGA-II multi-objective
EA [3]: standard tournament selection of size 2 and deterministic replacement
among parents + offspring, both based on the Pareto ranking and crowding dis-
tance selection; a population size of 100 evolves during 30 generations. All other
parameters were those used for the single objective case.

Fitnesses. The problem has two objectives: one is the the total makespan (as in
the single-objective case), the other is either the risk (aggregated using the max
operator) or the cost (an additive objective). Because the global risk only takes
3 values, there is no way to have any useful gradient information when used as
fitness in the max case. However, even in the additive case, the same arguments
than for the makespan apply (section 4.1), and hence, in all cases, the second
objective is the sum of the overall risk/cost and the average (not the sum) of
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the values for all partial problems – excluding from this average those partial
problems that have a null makespan (when the goal is already included in the
initial state).

Results. For the additive (cost) case, the most difficult Pareto optimum (going
through city 3 only) was found 4 times out of 11 runs. However, the 2 other
remarkable Pareto optima, as well as several other points in the Pareto front
were also repeatedly found by all runs. Figure 1-b shows different snapshots
of the population at different stages of the evolution for a typical successful
run: at first (‘+’), all individuals have a high cost (above 800); At generation 3
(‘×’), there exist individuals in the population that have cost less than 600; At
generation 10 (squares), many points have a cost less than 100. But the optimal
(24,8) solution is only found at generation 28 (circles).

The problem in the risk context (the max case) proved to be, as expected,
slightly more difficult. All three Pareto optima (there exist no other point of the
true Pareto front in the max case) were found only in 2 runs out of 11. However,
all runs found both the two other Pareto optima, as well as the slightly sub-
optimal solutions that goes only through city 3 but did not find the little trick
mentioned earlier, resulting in a (36,1) solution.

In both cases, those results clearly validate the Divide-and-Evolve approach
for multi-objective TPPs – remember that CPT has no knowledge of the risk/cost
in its optimization procedure - it only aggregates the values a posteriori, after
having computed its optimal plan based on the makespan only – hence the dif-
ficulty to find the 3rd Pareto optimum going only through city3.

5 Discussion and Further Work

A primary concern is the existence of a decomposition for any plan with optimal
makespan. Because of the restriction of the representation to the predicates
that are in the goal, some states become impossible to describe. If one of these
states is mandatory for all optimal plans, the evolutionary algorithm is unable
to find the optimal solution. In the zeno14 benchmark detailed in section 3.3,
for instance, one can see from the optimal solution that the in predicate should
be taken into account when splitting the optimal solution, in order to be able
to link a specific person to a specific plane. The main difficulty, however, is to
add the corresponding state invariant between at and in (a person is either at a
location or in a plane). Future work will include state invariants involving pairs
of predicates, to cope with such cases. Along the same line, we will investigate
whether it might be possible to automatically infer some state invariants from
the data structures maintained by CPT.

It is clear from the somehow disappointing results presented in section 4.1
that the search capabilities of the proposed algorithm should be improved. But
there is a lot of space for improvements. First, and most immediate, the variation



A New Memetic Scheme for Domain-Independent Temporal Planning 259

operators could use some domain knowledge, as proposed in section 2.3 – even if
this departs from “pure” evolutionary blind search. Also, all parameters of the
algorithm will be carefully fine-tuned.

Of course the Divide-and-Evolve scheme has to be experimented on more
examples. The International Planning Competition provides many instances in
several domains that are good candidates. Preliminary results on the driver
problem showed very similar results that those reported here on the zeno domain.
But other domains, such as the depot domain, or many real-world domains,
involve (at least) 2 predicates in their goal descriptions (e.g., in and on for
depot) . It is hence necessary to increase the range of allowed expressions in the
description of individuals.

Other improvements will result from the move to the new version of CPT,
entirely rewritten in C. It will be possible to call CPT from within the EA, and
hence to perform all grounding, pre-processing and CSP representation only
once: at the moment, CPT is launched anew for each partial computation, and a
quick look at table 1 shows that on zeno14 problem, for instance, the run-time
per individual will decrease from 250 to 55 seconds. Though this will not per
se improve the quality of the results, it will allow us to tackle more complex
problems than even zeno14. Along the same lines, other planners, in particular
sub-optimal planners, will also be tried in lieu of CPT, as maybe the Divide-
and-Evolve approach could find optimal results using sub-optimal planners (as
done in some sense in the multi-objective case, see section 4.2).

A last but important remark about the results is that, at least in the single
objective case, the best solution found by the algorithm was always found in
the very early generations of the runs: it could be that the simple splits of the
problem into smaller sub-problems that are done during the initialization are
the main reasons for the results. Detailed investigations will show whether or
not an Evolutionary Algorithm is useful in that context!

Nevertheless, we do believe that using Evolutionary Computation is manda-
tory in order to solve multi-objective optimization problems, as witnessed by the
results of section 4.2, that are, to the best of our knowledge, the first ever results
of Pareto optimization for TPPs.
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Abstract. Variable Neighbourhood Search (VNS) is one of the most recent 
metaheuristics used for solving combinatorial optimization problems in which a 
systematic change of neighbourhood within a local search is carried out. In this 
paper, a variable neighbourhood search algorithm is proposed for Job Shop 
Scheduling (JSS) problem with makespan criterion. The results gained by VNS 
algorithm are presented and compared with the best known results in literature. 
It is concluded that the VNS implementation is better than many recently pub-
lished works with respect to the quality of the solution. 

1   Introduction 

Metaheuristics are general strategies for designing heuristic procedures to solve an 
optimization problem by a search process on the solution space. The heuristic search 
procedures are generally based on transformations of the alternatives that determine a 
neighbourhood structure on the solution space. Variable neighbourhood search (VNS) 
is a recent metaheuristic for solving combinatorial and global optimization problems 
whose basic idea is systematic change of neighbourhood within a local search. It is 
based upon a simple principle: change the neighbourhood structure when the search is 
trapped on a local minimum, which is very likely in most of combinatorial and/or 
multi-model numerical optimisation problems. Especially, as search space grows fast 
with growing problem sizes, the likelihood of being trapped in local minima becomes 
inevitable. The main concern of research in this field is to recover trapped search or to 
put effort for preventing on-line. VNS offers a multiple neighbourhood structure with 
which one recovers the solutions trapped via the others. The main idea here is to 
choose heuristics (neighbourhood structures) complementary to each other.  

Job Shop Scheduling (JSS) problems with the objective function of minimizing 
makespan (Cmax) is one of the best known and strongly NP-hard [16] combinatorial 
optimization problems. Among the benchmarks within the literature, small size in-
stances of the JSS problems can be solved in reasonable computational time by exact 
algorithms such as branch-and-bound approach [3, 10]. However, when the problem 
size increases, the computational time of the exact methods grows exponentially. 
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Therefore, the recent research on JSS problems is focused on heuristic algorithms 
such as Simulated Annealing (SA) [4, 21, 27], Genetic Algorithm (GA) [7, 14, 17, 
18], Taboo Search (TS) [13, 23, 24], Ant Colony Optimization (ACO) [8, 12], Neural 
Network (NN) [26], Shifting Bottleneck Procedure [1, 19], Guided Local Search [5], 
Parallel Greedy Randomized Adaptive Search Procedure (GRASP) [2] and Constraint 
Propagation [14]. A comprehensive survey of the JSS problem can be found in [20]. 

In this paper, we propose a new implementation of VNS algorithm for JSS prob-
lems. The main idea of new implementation is to look for the best time and condition 
to switch to the other neighbourhood structure from one, whereas heuristics are util-
ised on a periodical bases in traditional VNS. That is to diversify the solution when it 
needs. The algorithms have been tested with several hard benchmark instances of the 
JSS problems. The novelty of this study comes from the success of modified VNS 
algorithm as it is the first implementation of VNS for JSS problems to our knowledge.  

The organization of this paper is as follows. Section 2 introduces the foundations 
of VNS algorithm, job shop scheduling problems and the representation method ex-
ploited in this study. A novel implementation of VNS, namely Modified VNS, is 
elaborated in Section 3 while experimental results are presented and discussed in 
Section 4. Finally, Section 5 presents the concluding remarks. 

2   Background 

In the following sub-sections, the foundations of VNS, JSS and the way in which JSS 
problems are represented have been elaborated.      

2.1   Variable Neighbourhood Search (VNS) Algorithms 

VNS algorithm, one of very well-known local search methods [22], gets more atten-
tion day-by-day, because of its ease of use and accomplishments in solving combina-
torial optimisation problems [25, 28]. Basically, a local search algorithm carries out 
exploration within a limited region of the whole search space. That facilitates a provi-
sion of finding better solutions without going further investigation.  The VNS is a 
simple and effective search procedure that proceeds to a systematic change of 
neighbourhood. An ordinary VNS algorithm (Fig. 1) gets an initial solution, s∈S, 
where S is the whole set of search space, than manipulates it through a two nested 
loop in which the core one alters and explores via two main functions so called shake 
and localSearch. The outer loop works as a refresher reiterating the inner loop, while 
the inner loop carries the major search. localSearch explores an improved solution 
within the local neighbourhood, whilst shake diversifies the solution by switching to 
another local neighbourhood. The inner loop iterates as long as it keeps improving the 
solutions, where an integer, k, controls the length of the loop. Once an inner loop is 
completed, the outer loop re-iterates unless the termination condition is not met. Since 
the complementariness of neighbourhood functions is the key idea behind VNS, the 
neighbourhood structure / heuristic functions should be chosen very rigorously so as 
to achieve an efficient VNS. 
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Fig. 1. A pseudo code for VNS algorithm 

2.2   Job Shop Scheduling Problems 

Job Shop Scheduling (JSS) problems have been studied for a long time. Since it is not 
that easy to reach the optimal solutions within a short time, because of the NP-Hard 
nature, and there is no guarantee to switch to a better state from a feasible state, this 
problem type has been a very strong testbed for metaheuristics. Furthermore, they 
have never been dropped from scientific research. 

The problem is comprised of a set of jobs (J) to be processed on a set of machines 
(M) subject to a number of technological constraints. Each job consists of m opera-
tions, Oj={o1j,…,omj}, each operation must be processed on a particular machine, and 
there is only one operation of each job to be processed on each machine. There is a 
predefined order of the operations of each particular job in which each operation has 
to be processed after its predecessor (PJj) and before its successor (SJj). In the end of 
the whole schedule, each machine completes processing n operations in an order that 
is determined during the scheduling time, although there is no such order initially. 
Therefore, each operation processed on the Mi has a predecessor (PMi ) and a succes-
sor (SMi ). A machine can process only one operation at a time. There are no set-up 
times, no release dates and no due dates.  

Each operation has a processing time (pij) on related machine starting at the time of rij . 
The completion time of oij is therefore: cij=rij+pij, where i = (1,...,m), j = (1,..., n) and 

),max( jPMiPJij ij
ccr = . Machines and jobs have particular completion times, which are 

denoted and identified as: inM cC
i

=  and inJ cC
j

=  where cin and cjm are the completion time 

of the last (nth) operation on ith machine and the completion time of the last (mth) opera-
tion of jth job, respectively. The overall objective is to minimise the completion time of 
the whole schedule (makespan), which is the maximum of machines’ completion times, 
Cmax = max (CM1,...,CMm ). The representation is done via a disjunctive graph, as it is 
widely used. 
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2.3   Problem Representation 

Schedules are represented in a set of integers, where each stands for an operation. It is 
also called chromosome of n×m gene represents a problem of n jobs, m machines. 
Since each integer does not represent a certain operation, but the last completed op-
eration of corresponding job, each job is represented m times within the chromosome. 
This way of representation prevents infeasibility, and always provide with a feasible 
active schedule.  For instance, we are given a chromosome of [2 1 2 2 1 3 1 3 3], 

where {1, 2, 3} represents { 1j , 2j , 3j } respectively. Obviously, there are totally 9 

operations, but, 3 different integers, each is repeated 3 times. The integer on the first 
gene, 2, represents the first operation of the second job to be processed first on corre-
sponding machine. Likewise, the integer on the second gene, 1, represents the first 
operation of the first job on corresponding machine.  Thus, the chromosome of [2 1 2 
2 1 3 1 3 3] is understood as [o21, o11, o22, o23, o12, o31, o13, o32, o33] where oij stands for 
the ith operation of jth job. More details can be found in [11]. 

2.4   Neighbourhood Structure 

The neighbourhood structure with which the neighbouring solutions are determined to 
move to is one of the key elements of metaheuristics, as the performance of the meta-
heuristic algorithm significantly depends on the efficiency of the neighbourhood 
structure. The following two neighbourhood structures are employed in this study: 

- Exchange is a function used to move around in which any two randomly se-
lected operations are simply swapped. For instance, suppose that we are given 
a state of [2 1 2 2 1 3 1 3 3] and the two random numbers derived are 2 and 8. 
After applying Exchange, the new state will be [2 1 3 2 1 3 1 3 2]. Obviously, 
the 2nd and 8th genes of the chromosome were 2 and 3, respectively. Applying 
Exchange function, the new 2nd and 8th genes were swapped and turned to 3 
and 2, respectively. 

- Insert is another fine-tuning function that inserts a randomly chosen gene in 
front or back of another randomly chosen gene. For instance, we are given the 
same state as before. In order to apply Insert, we also need to derive two ran-
dom numbers; one is for determining the gene to be inserted and the other is 
for the gene that insertion to be done in front/back of it. Let us say those num-
ber are 3 and 5, where 3rd gene is 2 and the 5th one is 3. Consecutively, the new 
state will be [2 1 2 1 2 3 1 3 3].  

Although there are other possible functions to be applied, we preferred the afore-
mentioned functions due to their simplicity and ease of use alongside of a reasonable 
efficiency.  

3   The Modified VNS Implementation for JSS 

The VNS implementation for JSS problems has been carried out based on the afore-
mentioned information provided. Exchange and Insert functions are adopted as local 
search and shake respectively, meaning that the solution undertaken is shaked by 
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Insert function and then submitted it to the local search that manipulates the solution 
by Exchange. Although Insert and Exchange are found very complementary to each 
other, the VNS developed ordinarily has not provided impressive results. For that 
purpose, we kept investigating for a better equipped VNS algorithm in which the 
problems can be solved straightforwardly.  

Modified VNS algorithm is the newly developed VNS implementation based on 
complementary heuristics for better quality of solution within a shorter time. We 
realised that the main bottleneck of VNS lies in the pairing of the heuristics to shape 
up, shake and localSearch functions. In fact, they have to complete each other so as to 
develop an efficient algorithm. For this purpose, the core of VNS algorithm, which 
functions in the middle, has been shaped up with two complementary heuristics, ex-
change and insert, in a way that the heuristics runs as the shake function is invoked 
whenever it is needed subject to the conditions. Otherwise, the one functions as local-
Search keeps running. The other significant novelty is the insert of a perturbation 
function into the algorithm. This is because of the need of periodical diversification in 
the search. In many cases, local optima blocks the way of search, especially in the 
algorithms as such. 

 

Fig. 2. Pseudo code for Modified VNS algorithm 

Modified VNS algorithm is sketched in a pseudo code given by Fig. 2. As ex-
plained in the previous paragraph, it has been developed wrapping shake and local 
search functions into a combined function, which allows each working subject to 
certain conditions. In addition, it has been equipped with a perturbation function out-
side the inner loop. This algorithm has been tested as reported in the following sec-
tion.  The perturbation procedure consists of a combination of Exchange and Insert 
functions, where Exchange operates first, then Insert runs with its outcome and finally 
Exchange re-operates on the outcome of Insert. This is shown by Fig. 3.  
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Fig. 3. The way perturbation function is shaped up 

4   Experimental Results 

In this paper, we propose a VNS implementation for job shop scheduling problems 
with a wide range of experimentation.  In the following section, we provide with 
experimental results and relevant discussions in order to make clear the fundamentals 
of the implementation. The measures considered in this study are mainly about quality 
of solution and/or computational time. The success of the algorithm regarding the 
quality of solution has mainly been accounted with respect to the relative percentage 
of error (RPE) index, which is calculated as follows: 

100
)( ×−=

opt

optbf
RPE  (1) 

where bf is the best makespan found and opt is either the optimum or the lowest 
boundary known for unknown optimum values.  Obviously, RPE is calculated based 
on the mean, and also can be measured benchmark-by-benchmark. In order to review 
the results in a broader point of view, we developed a second index based on the latter 
RPE calculation averaged over the 30 repetitions. That is called ARPE standing for 
averaged relative percentage of error. The third index used is the hitting-ratio (HR) 
being calculated as the number of optimum found through the whole repetitions. This 
is needed as other indexes may not build a sufficient level of confidence with the 
results. The experimentation was carried out on a PC equipped with Intel Pentium IV 
2.6 GHz processor and 256MB memory. The software coded in C programming lan-
guage. The JSS benchmark problems, which are very well known within the field, 
were picked up from OR-Library [6]. 

In Table 1, the experimental results gained by VNS and Modified VNS algorithms 
with respect to the quality of solutions measured in RPE, ARPE and HT indexes, 
where first two are minimized and the last one (HR) is maximized. The experiments 
have been conducted over 31 benchmarks tackled; some are known moderately hard 
but some are very hard. The accomplishments of both algorithms are clearly reflected. 
Last three columns of Table 1 are assigned for the results gained by the ordinary 
VNS, while the middle three present the results by Modified VNS, which are signifi-
cantly better and evidently improved. HR index by normal VNS remains 0 % for 
almost all of the benchmarks, which means that almost none of the trail of experi-
ments provided with an optimum makespan for none of the benchmarks. On the other 
hand, HR by Modified VNS remains 0 % for only 7 of 31 benchmarks, which are 
known very difficult, where the 11 of 31 are 50 % or more and the rest provided with 
less than 50 % provision of optimum. The other two indexes by normal VNS are very 
solidly and significantly higher than the ones by Modified VNS.  
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Table 1. Results obtained from two VNS algorithms with respect to 3 indexes for quality of 
solutions 

Benchmarks Modified VNS Ordinary VNS 

Name Opt. RPE ARPE HR RPE ARPE HR 

ft10 930 0.00 0.55 0.60 3.02 7.47 0.00 

ft20 1165 0.00 0.54 0.50 1.27 2.70 0.00 

la16 945 0.00 0.30 0.50 0.11 2.26 0.00 

la19 842 0.00 0.09 0.93 2.77 3.57 0.00 

abz05 1234 0.00 0.10 0.60 0.00 0.86 0.03 

abz06 943 0.00 0.00 1.00 2.38 2.58 0.00 

orb01 1059 0.00 1.47 0.13 2.22 4.79 0.00 

orb02 888 0.11 0.33 0.00 0.89 2.92 0.00 

orb03 1005 0.00 2.60 0.10 6.25 7.85 0.00 

orb04 1005 0.00 0.62 0.40 1.66 3.48 0.00 

orb05 887 0.00 0.31 0.17 2.31 4.92 0.00 

orb06 1010 0.00 0.89 0.10 2.04 7.20 0.00 

orb07 397 0.00 0.27 0.80 2.46 3.31 0.00 

orb08 899 0.00 1.63 0.23 1.86 5.45 0.00 

orb09 934 0.00 0.78 0.13 0.53 2.94 0.00 

orb10 944 0.00 0.00 1.00 0.74 4.19 0.00 

abz07 656 0.46 2.01 0.00 4.93 6.45 0.00 

abz08 665 0.60 1.99 0.00 6.99 7.28 0.00 

abz09 679 0.15 2.17 0.00 6.34 7.16 0.00 

la21 1046 0.00 0.62 0.03 1.88 4.81 0.00 

la22 927 0.00 0.24 0.57 1.70 2.90 0.00 

la24 935 0.00 0.60 0.03 1.58 4.12 0.00 

la25 977 0.00 0.64 0.07 0.91 3.72 0.00 

la27 1235 0.08 0.91 0.00 2.76 4.08 0.00 

la28 1216 0.00 0.03 0.87 1.38 2.33 0.00 

la29 1152 0.95 1.80 0.00 5.88 7.39 0.00 

la36 1268 0.00 0.49 0.27 1.78 3.60 0.00 

la37 1397 0.00 0.73 0.37 3.72 5.62 0.00 

la38 1196 0.00 0.97 0.07 2.13 5.18 0.00 

la39 1233 0.00 0.43 0.30 1.83 3.49 0.00 

la40 1222 0.16 0.42 0.00 2.16 3.59 0.00 

The investigation on fine-tuning the local search algorithms has been carried out 
over various combinations of aforementioned local search heuristics, namely Ex-
change and Insert.  Table 2 reflects the performances of each case considered with 
respect to the three performance indexes. The cases considered are Exchange only, 
Insert only, Exchange with Insert, Insert with Exchange and Exchange with Insert 
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without perturbation. Obviously, the worst case indicated in the lowermost row of 
Table 2 presents the performance of Exchange with Insert without Perturbation, 
which reflects the significance of perturbation in this algorithm. The other cases are 
not that significantly worse, where the performance of Exchange only and Insert only 
are remarkably distinguishable from other two. The rest two cases are not signifi-
cantly different from each other, though Exchange with Insert seems the best in num-
bers as PRE and HR indexes are better, but APRE is worse than Insert with  
Exchange.  All these experiments are carried out over 30 trails each. 

Table 2. The performance of various heuristics with modified VNS algorithms with respect to 
all three indexes 

Heuristics PRE ARPE HR 

Exchange 0.30 1.22 0.52 

Insert 0.13 1.00 0.74 

Exchange+Insert 0.08 0.79 0.77 

Insert+Exchange 0.13 0.76 0.71 

Without Perturbation 0.44 3.10 0.45 

The impact of perturbation is obvious from Table 2 as the worst case indicated is 
the case with which perturbation operation has not been considered. As mentioned 
before, perturbation operation is a combined operation of Exchange and Insert func-
tions, where Exchange operates once before and once after Insert. The idea behind 
this operation is to release the possible restrictions of some improved results via the 
heuristics; each functions as an independent hill climber. Perturbation refreshes the 
solution and provides some diversity for preventing further traps.   

Table 3 presents results provided with various meta-heuristics recently published 
and Modified VNS algorithm with respect to the quality of the solutions in PRE in-
dex, which is the only measure provided in common. The benchmarks chosen are 
those which considered very hard among the list of 31 in Table 1. We are not able to 
provide a comparison for the whole list of benchmarks provided in Table 1 as the 
comparing works have mostly considered those listed in Table 3, but not the whole 
list of Table 1.  These algorithms taken into account are listed as follows: 

- Distributed evolutionary simulated annealing algorithm (dESA) Aydin and 
Fogarty [4].  

- Ant colony optimization algorithm (ACO GSS) by Blum and Sampels [8]. 
- Parallel GRASP with path-relinking (GRASP) by Aiex et al.[2] 
- A Hybrid Genetic Algorithm (HGA) by Goncalves et al.[18]. 
- A Tabu Search Method (TSSB) by Pezzella and Merelli [24]. 

Obviously, the column providing best results is the last one that presents the re-
sults with Modified VNS, where the others are competitive among one another. The 
last row presents the average PRE values of each column, where the minimum is also 
in the column of VNS. All these results prove the strength of this VNS implementa-
tion (Modified VNS) for JSS problems. 
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Table 3. A comparison among the meta-heuristics recently published with respect to the quality 
of the solution in RPE index 

Benchmarks PRE performance 

Name Opt. 
dESA 

[4] 
ACO 

GSS [8] 
GRASP 

[2] 
HGA 
[18] 

TSSB 
[24] VNS 

abz07 656 2.44 2.74 5.49 NA 1.52 0.46 

abz08 665 2.41 3.61 6.02 NA 1.95 0.60 

abz09 679 2.95 3.39 8.98 NA 2.06 0.15 

la21 1046 0.00 0.10 1.05 0.00 0.00 0.00 

la24 935 0.32 0.96 2.03 1.93 0.32 0.00 

la25 977 0.00 0.00 0.72 0.92 0.20 0.00 

la27 1235 0.40 0.65 2.75 1.70 0.00 0.08 

la29 1152 2.08 1.39 4.43 3.82 1.39 0.95 

la38 1196 0.42 2.59 1.84 1.92 0.42 0.00 

la40 1222 0.49 0.49 1.80 1.55 0.90 0.16 

Average  1.15 1.59 3.51 1.69 0.88 0.24 

5   Conclusion 

Job shop scheduling problem has been studied for far a long time. Because of its hard-
ness and being representative for planning problems, many methods have been tested 
with this family of problems. In this paper, a novel VNS implementation has been 
introduced for classical job shop problems. The novelty of this implementation is 
provided with a combined local search algorithm and a perturbation function which 
frequently refreshes the solution undertaken. It has been shown that this method has 
done well and outperformed a number of recently published meta-heuristics. The 
research is ongoing on the course of parallelization of VNS algorithm to get better 
quality of solution within far shorter time. 

References 

1. Adams, J., Balas, E., and Zawack, D. :The Shifting Bottleneck Procedure for Job Shop 
Scheduling. Management Science 34 (1988) 391-401. 

2. Aiex, R. M., Binato, S., and Resende, M. G. C. :Parallel GRASP with Path-Relinking for 
Job Shop Scheduling. Parallel Computing 29 (2003) 393-430. 

3. Applegate, D., and Cook, W. :A Computational Study of Job-Shop Scheduling. ORSA 
Journal on Computing 3(2) (1991) 149-156. 

4. Aydin, M. E., and Fogarty, T. C.: A Distributed Evolutionary Simulated Annealing Algo-
rithm for Combinatorial Optimisation Problems. Journal of Heuristics 10 (2004) 269-292. 

5. Balas, E., and Vazacopoulos, A. :Guided Local Search with Shifting Bottleneck for Job 
Shop Scheduling. Management Science 44 (1998) 262-275. 



270 M. Sevkli, and M.E. Aydin 

6. Beasley, J.E. "Obtaining Test Problems via Internet." Journal of Global Optimisation 8, 
429-433, http://people.brunel.ac.uk/~mastjjb/jeb/info.html. 

7. Bierwith, C. :A Generalized Permutation Approach to Job Shop Scheduling with Genetic 
Algorithms. OR Spektrum 17 (1995) 87-92. 

8. Blum, C., and Sampels, M. :An Ant Colony Optimization Algorithm for Shop Scheduling 
Problems. Journal of Mathematical Modelling and Algorithms 3 (2004) 285-308. 

9. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Abadi, M., Ito, 
T. (eds.): Theoretical Aspects of Computer Software. Lecture Notes in Computer Science, 
Vol. 1281. Springer-Verlag, Berlin Heidelberg New York (1997) 415–438 

10. Carlier, J., and Pison, E. :An Algorithm for Solving the Job-Shop Problem, Management 
Science 35 (1989) 164-176. 

11. Cheng, R. , Gen, M., and Tsujimura, Y. :A Tutorial Survey of Job Shop Scheduling Prob-
lems Using genetic Algorithms-I. Representation. Journal of Computers and Industrial En-
gineering 30(4) (1996) 983-997. 

12. Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M. :Ant System for Job-Shop Sched-
uling. Belgian Journal of Operations Research, Statistics and Computer Science 
(JORBEL) 34(1) (1994) 39-53. 

13. Dell'Amico, M., and Trubian, M. :Applying Tabu-Search to the Job-Shop Scheduling 
Problem. Annals of Operations Research 4 (1993) 231-252. 

14. Dorndorf, U., and Pesch, E.: Evolution Based Learning in a Job Shop Scheduling Envi-
ronment, Computers & Operations Research 22 (1995) June 26, 2005 0:30 International 
Journal of Production Research "A hybrid PSO for the JSSP" 

15. Dorndorf, U., Pesch, E., and Phan-Huy, T.: Constraint Propagation and Problem Decom-
position: A Preprocessing Procedure for the Job Shop Problem, Annals of Operations Re-
search 115 (2002) 125-145.  

16. Garey, M. Johnson, D., and Sethy, R. :The Complexity of Flow Shop and Job Shop 
Scheduling. Mathematics of Operations Research 1 (1976) 117-129. 

17. Groce, F. D. Tadei, R., and Volta, G. :A Genetic Algorithm for the Job Shop Problem. 
Computers & Operations Research 22 (1995) 15-24. 

18. Goncalves, J. F., Mendes, J. M., and Resende, M. :A hybrid genetic algorithm for the job 
shop scheduling problem, European Journal of Operations Research 167(1) (2004) 77-95. 

19. Huang, W., and Yin, A. : An Improved Shifting Bottleneck Procedure for the Job Shop 
Scheduling Problem. Computers & Operations Research 31 (2004) 2093-2110. 

20. Jain, A., and Meeran, S. : Deterministic Job-Shop Scheduling: Past, Present and Future. 
European Journal of Operational Research. 113: (1999) 390-434. 

21. Kolonko, M. :Some New Results on Simulated Annealing Applied to the Job Shop Sched-
uling Problem. European Journal of Operational Research 113, (1999) 123-136. 

22. Mladenovic, N., and Hansen, P. :Variable Neighborhood Search. Computers and Opera-
tions Research 24 (1997) 1097-1100. 

23. Nowicki, E., and Smutnicki, C.: A Fast Taboo Search Algorithm for the Job Shop Prob-
lem. Management Science 42 (1996) 797-813. 

24. Pezzella, F. and Merelli, E. :A Tabu Search Method Guided by Shifting Bottleneck for the 
Job Shop Scheduling Problem. European Journal of Operational Research 120:297-310, 
2000. 

25. Ribeiroa, C. C. and Souza, M., C.: Variable neighborhood search for the degree-constrained 
minimum spanning tree problem, Discrete Applied Mathematics 118 (2002) 43–54 

26. Satake, T., Morikawa, K., Takahashi, K., and Nakamura, N. :Neural Network Approach 
for Minimizing the Makespan of the General Job- Shop. International Journal of Produc-
tion Economics 33 (1994) 67-74. 



 A Variable Neighbourhood Search Algorithm for Job Shop Scheduling Problems 271 

27. Satake, T., Morikawa, K., Takahashi, K., and Nakamura, N. :Simulated Annealing Ap-
proach for Minimizing the Makespan of the General Job- Shop. International Journal of 
Production Economics 60 (1999) 515-522. 

28. Urosevic,D., Brimberg,J. and Mladenovic, N., Variable neighborhood decomposition  
search for the edge weighted k-cardinality tree problem, Computers & Operations Re-
search 31 (2004) 1205-1213 



J. Gottlieb and G.R. Raidl (Eds.): EvoCOP 2006, LNCS 3906, pp. 272 – 283, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

An Efficient Hybrid Search Algorithm for Various 
Optimization Problems 

Mario Vanhoucke1,2 

1 Ghent University, Hoveniersberg 24, 9000 Ghent, Belgium 
2 Vlerick Leuven Gent Management School, Reep 1, 9000 Ghent, Belgium 

Mario.vanhoucke@ugent.be 
Mario.vanhoucke@vlerick.be 

Abstract. This paper describes a detailed study of a recursive search algorithm 
for different optimization problems. Although the algorithm has been originally 
developed for a project scheduling problem with financial objectives, we show 
that it can be extended to many other application areas and therefore, can serve 
as a sub-procedure for various optimization problems. The contribution of the 
paper is threefold. First, we present a hybrid recursive search procedure for the 
project scheduling problem with net present value maximization and compare it 
with state-of-the-art procedures by means of computational tests. Second, we 
show how the procedure can be adapted to two other application areas: project 
scheduling with work continuity minimization and the open pit mining problem. 
Last, we highlight some future research areas where this hybrid procedure 
might bring a promising contribution. 

1   Introduction 

In 1964, [1] introduced the idea of maximizing the net present value (npv) of the cash 
flows of a project as a financially highly relevant criterion. Since then, a large amount 
of algorithms have been presented in the literature under different assumptions with 
respect to network representation (activity-on-the-node versus activity-on-the-arc) and 
cash flows patterns (positive and/or negative, event-oriented or activity-based and 
time-dependent vs. time-independent). In their paper [17] examined the rationale 
behind this idea and gave an overview of the existing algorithms.  

The basic problem under study involves the scheduling of project activities in order 
to maximize the net present value (npv) of the project in the absence of resource 
constraints. Assume that the project is represented by an activity-on-the-node (AoN) 
network G = (N, A) where the set of nodes, N, represents activities and the set of arcs, 
A, represents the precedence constraints. The activities are numbered from the dummy 
start activity 1 to the dummy end activity n. The duration of an activity is denoted by 
di (1 ≤ i ≤ n) and the performance of each activity involves a series of cash flow 
payments and receipts throughout the activity duration. Assume that cfit (1 < i < n) 
denotes the known deterministic cash flow of activity i in period t of its execution. A 
terminal value of each activity upon completion can be calculated by compounding 
the associated cash flow to the end of the activity as follows:  
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where α represents the discount rate and ci the terminal value of cash flows of activity 
i at its completion. The nonnegative integer variables si and fi (1 ≤ i ≤ n) denote the 
starting time and completion time, respectively, of activity i. The discounted value of 
activity i at the beginning of the project is 
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A formulation of the problem can be given as follows:   
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The objective in Eq. (3) maximizes the net present value of the project. The 
constraint set given in Eq. (4) maintains the precedence relations with time-lag lij 
among the activities. Eq. (5) limits the project duration to a negotiated project 
deadline δn and Eq. (6) forces the dummy start activity to start at time zero. The time-
lag lij and the different types of generalized precedence relations can be represented in 
a standardized form by reducing them to minimal start-start precedence relations as 
shown by [2]. 

The early research has focused on the case where activity cash flows are 
independent on the completion times of the corresponding activities. Depending on 
the type of precedence relations, we distinguish between problems where only 
minimal time-lags between the activities are considered and problems with 
generalized precedence constraints, i.e. where both minimal and maximal time-lags 
are taken into account. Following the classification scheme of [18], the first type of 
project scheduling problem can be categorized as min,δn,cj npv and is further denoted 
as the max-npv problem. Exact algorithms for the max-npv problem have been 
presented by [6], [10], [15], [16], [25] and [32]. The introduction of generalized 
precedence relations (gpr) transforms the problem into the max-npv-gpr problem 
(problem gpr,δn,cj npv) and is the topic of research done by [8], [20], [23], [26]  
and [27]. 

Recent research has focused on the case where activity cash flows are dependent 
on the completion times of the corresponding activities (e.g. the papers by [3], [4], 
[5], [12], [13], [21], [28], [29], [32], [33] and [34]). In this paper, however, we restrict 
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our attention to the maximization of the net present value of an unconstrained project 
in which we assume that the cash flows are time-independent. We show that an 
efficient hybrid solution procedure for the cash-flow problem can be extended to 
many other applications areas, and therefore, might be a promising algorithm for 
future research purposes. 

The organization of the paper is as follows. In section 2 we briefly review the 
literature for the max-npv-gpr problem. Furthermore, we present a hybrid search 
algorithm for the max-npv-gpr problem based on ideas from different sources in 
literature. In section 3 we report the results of a computational experiment set up to 
validate the hybrid procedure described in this paper. In section 4 we describe two 
applications where the efficient hybrid algorithm can be used as a sub-problem. We 
conclude in section 5 with some overall conclusions. 

2   The Max-npv-gpr Procedures 

In section 2.1 we give an overview of the procedures in literature for the max-npv-gpr 
problem. In section 2.2 we discuss a hybrid approach in order to improve efficiency. 
Section 2.3 presents a project example. 

2.1   The Max-npv-gpr Procedures in Literature 

[20] has presented an exact solution procedure for the max-npv-gpr problem based on 
the approach by [15]. The introduction of a new pivot rule extends this last procedure 
to generalized precedence relations. [6] propose an activity-oriented recursive search 
algorithm for the max-npv problem as described in Eqs. (3)-(6) with lij = di for all (i, j) 
∈ A. [32] have updated this recursive search algorithm and incorporated it in a 
branch-and-bound algorithm for the resource-constrained max-npv problem. [8] have 
extended this procedure using the so-called distance matrix D in order to cope with 
generalized precedence relations. [9] have embedded the procedure of [8] into a 
branch-and-bound algorithm for the resource-constrained project scheduling problem 
with discounted cash flows and generalized precedence constraints. [23] have adapted 
the procedure by [15] and have investigated different pivot rules. Finally, [26] and 
[27] have presented a steepest ascent algorithm and compared different solution 
procedures on two randomly generated test sets. Note that [22] have shown that the 
project scheduling problem with general cost functions can be transformed into a 
minimum-cut problem, and hence, can be solved by any minimum-cut solution 
procedure. In the next sub-sections, we present a hybridized method based on the 
recursive search principles taken from [6], [8], [26], [27] and [32]. 

2.2   Hybridization of Max-npv-gpr Procedures 

In this section, we extend the recursive search procedure of [32] to cope with 
generalized precedence relations. Furthermore, we hybridize this adapted recursive 
search method with ideas from the steepest ascent approach of [26] and [27] and 
extend it with a forward/backward calculation principle. 
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2.2.1   Adapting the Recursive Search Procedure for the Max-npv-gpr Problem 
Although the original recursive search procedure of [32] has been developed for 
minimal precedence relations with a time-lag of zero, it can be easily modified in 
order to cope with generalized precedence relations. The procedure builds an initial 
tree for the project, and then iteratively searches the tree for sets of activities to shift. 
These activities are then shifted forwards in time within a calculated displacement 
interval, aiming at an improvement of the total net present value. In the adapted 
procedure, the allowable displacement interval vkl, which simply calculates the 
minimal distance over which an activity set SA can be shifted forwards in time, need 
to take the generalized precedence relations into account, as follows:  

}{min
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lk lssv −−=

∉
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This interval simply calculates all time windows between all activities k ∈ SA and l 
∉ SA, taking into account the time-lags lkl, and selects the shortest time window for 
arc (k*, l*). Note that [8] also has transformed the procedure of [32] to cope with 
generalized precedence relations, but uses the distance matrix D as a basis for the tree 
calculation. Our adapted approach uses the original precedence relations as a basis for 
the tree calculations, and hence, avoids the time-consuming computation of this 
distance matrix. 

In section 3, we refer to the modified procedure as “RS-gpr” and use the 
abbreviations “DM-gpr” to refer to [8]. 

2.2.2   A Hybrid Search Procedure 
The steepest ascent approach [27] follows a similar approach than the recursive 
search method [32] but there are a number of differences. In the recursive search 
method, each time a set of activities SA has been found which can be shifted forwards, 
a number of steps are successively performed. First, the allowable displacement 
interval vkl is calculated and the activities are shifted. Second, the search tree ST is 
updated and finally, the recursion step is repeated to search for another set of 
activities to shift. The steepest ascent approach calculates all sets of activities in one 
step and shifts them one by one in a second step.  

The hybrid approach which is the subject of this section divides the logic of the 
recursive search method into two parts and borrows ideas from both the recursive 
search algorithm of [32] and the steepest ascent procedure of [27]. The first part 
(denoted as the “recursion” sub-procedure) only searches for sets of activities SA with 
a negative npv and which are, consequently, candidates to be shifted. The second step 
(referred to as the “shift_activities” sub-procedure) calculates an allowable 
displacement interval for each set SA ∈ SS similar to Eq. (7).

The pseudocode of a hybrid approach is described hereafter. We use SA to denote 
the set of activities to be shifted, SS to denote the various sets SA found in the 
recursion step, Z to denote all the activities in SS that are candidates to be shifted, CA 
to denote the set of already considered activities during the search process and DC to 
denote the discounted cash flows. The symbol “→” refers to the output of the 
recursion sub-procedure. 
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Procedure Hybrid_recursive_search 
 CA = SS = ∅ 
 Do Recursion(1) 
 If SS ≠ ∅ then  
  Shift_activities(SS) and repeat Recursion(1)
 Else  
  Report the optimal solution (DC’) 
Return  

The pseudo-code of the two sub-procedures can be described as follows: 

Sub-procedure Recursion(newnode) 
 SA = {newnode}, DC = DCnewnode and CA = CA ∪ {newnode}
 Do ∀i|i∉CA and i succeeds newnode in the tree ST:
  Recursion(i) → SA’, DC’ 
  If DC’ 0 then set SA = SA ∪ SA’ and DC = DC + DC’
  Else ST = ST\(newnode,i) and SS = SS ∪ SA’
 Do ∀i|i∉CA and i precedes newnode in the tree ST:
  Recursion(i) → SA’, DC’ 
  Set SA = SA ∪ SA’ and DC = DC + DC’
Return 

Sub-procedure Shift_activities(SS) 
Let Z = {i∈SA|SA∈SS} be the set of activities which can 
possibly be delayed; 
While Z ≠ ∅ do

  Compute }{min
),(
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  Do ∀i∈SA|k*∈SA : Set si = si + vk*l* and Z = Z\{i};
  Set ST = ST ∪ (k*,l*);
Return 

In section 3, we refer to this procedure as “RS/SA-gpr”. In section 2.3, we illustrate 
the pseudocode on a project network. 

2.2.3   Forward and Backward 
In their paper, [32] have tested the impact of the percentage of negative cash flows in 
the project on the required CPU-time and have revealed that a higher percentage 
(except for 100% negative cash flows) of negative cash flows results in a more 
difficult problem. This is quite logic since a higher number of negative cash flows 
implies a larger number of shifts and consequently a more extensive search in the 
search tree. Inspired by these results, we further modified the hybrid search procedure 
of previous section for problem instances with more than 50% of the activities with a 
negative cash flow. In this case, we schedule the activities as late as possible (within 
the project deadline) and try to find sets of activities to shift backwards (toward time 
zero) in order to increase the net present value. We simply use the dummy end node 
as a basis of our recursive search instead of the dummy start node. Therefore, the net 
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present value calculations of Eq. (2) need to be modified, in order to calculate the 
discounted value of activity i at the end of the project, as follows: 

))(( iin ds
iec +−δα = )( in f

iec −δα  (8) 

This will lead to a considerable reduction of the number of shifts in our search, as 
revealed in the computational results section. In section 3, we refer to this procedure 
as “RS/SA(FB)-gpr” 

2.3   An Illustrative Example 

The example network of Fig. 1 (a) contains 4 non-dummy activities and minimal and 
maximal time-lags between the activities. The activity duration is displayed above the 
node while the cash flow is given below the node. The discount rate is 1.6% and the 
project deadline δn is 10. The numbers associated with the arcs denote the generalized 
precedence relations. A minimal time-lag is denoted by an arc (i, j) with a positive 
number while a maximal time-lag is represented by an arc (j, i) with a negative 
number (e.g. arc (4,3)). For the sake of simplicity, all arcs are of the start-start type. 

The initial search tree, which spans all activities at its earliest start schedule s1 = 0, 
s2 = 1, s3 = 0, s4 = 1, s5 = 6 and s6 = 7, is given in Fig. 1 (b).   
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Fig. 1. An example project with generalized precedence relations and its corresponding trees 

After the first run of the recursion sub-procedure, the sets SS = {(3), (4)} and Z = 
{3, 4} have been found. During this recursion search process, the arcs (1, 3) and (3, 4) 
have been removed from the tree. The activity sets {3} and {4} will be shifted in  
the shift_activities sub-procedure as follows: The sub-procedure calculates the 
minimal allowable displacement interval. The allowable displacement interval vkl = 
min{s5 – s4 – l45; s2 – s3 – l32} = {6 – 1 – 0; 1 – 0 – 1} is minimal for k* = 3 and l* = 2 
and hence, activity 3 is delayed in the search tree by adding arc (3, 2) and is removed 
from Z. Since Z = {4} is not empty, a new allowable displacement interval vkl = 
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min{s5 – s4 – l45; s3 – s4 – l43} = {6 – 1 – 0; 0 – 1 + 1} is minimal for k* = 4 and l* = 3, 
and hence, the sub-procedure adds arc (4, 3) in the search tree. Since both 
displacement intervals equal 0, the starting times remain unchanged. The search tree 
is displayed in Fig. 1 (c).  

The second run of the recursion sub-procedure reports one set SA = {2, 3, 4) and 
hence, Z = SS = {2, 3, 4}. During this recursion search process, the arc (1, 2) has been 
removed from the tree. The allowable displacement interval vkl = min{s5 – s4 – l45; s5 – 
s2 – l25} = {6 – 1 – 0; 6 – 1 – 3} is minimal for k* = 2 and l* = 5, and hence, the sub-
procedure adds arc (2, 5) in the search tree. Since vkl > 0, the starting times of each 
activity of SA is increased by 3 units to s2 = 3, s3 = 2 and s4 = 3. The search tree is 
displayed in Fig. 1 (d). 

The last run of the recursion sub-procedure does not report a non-empty set, and 
therefore, the optimal solution can be derived from the tree as displayed in Fig. 1 (d), 
i.e. s1 = 0, s2 = 3, s3 = 2, s4 = 3, s5 = 6 and s6 = 7. Note that the lump sum payment of 
50 at the end of the project forces the algorithm to minimize the total project duration, 
and hence, the deadline of 10 is irrelevant. 

3   Computational Experiences 

In order to test the efficiency of all procedures, we have coded them in Visual C++ 
version 6.0 under Windows XP on a Toshiba personal computer, with a Pentium IV 2 
GHz processor. We have used the 1,440 instances from [7] to validate the procedures 
for the max-npv-gpr problem. We have extended both datasets with cash flows 
generated from the interval [-500; 500], a discount rate of 1.6% and a project deadline 
which equals the critical path length increased by 100.  

In the sequel of this section we use “% neg” to denote the percentage of  
negative cash flows in the problem instances and “RS-gpr” to refer to the extended 
recursive search method of [32] to cope with generalized precedence relations (see 
section 2.2.1). “RS/SA-gpr” and “RS/SA(FB)-gpr” refer to the adaptations as proposed 
in section 2.2.2 and section 2.2.3 respectively. “SA-gpr” refers to the steepest ascent 
procedure of [27]. The abbreviation “DM-gpr” is used to refer to the procedure of [8] 
that relies on the distance matrix. 

Table 1 reports the results for the 15,840 (1,440 instances and 11 settings for the 
percentage of negative cash flows) instances for the max-npv-gpr problem. The 
columns labeled “CPU” display the average CPU-time in milliseconds needed to 
solve the problem instances. The columns labeled “iter” displays the average number 
of iterations for each procedure. For all recursive procedures, the number of iterations 
is defined as the number of times the recursion is called. For the steepest ascent 
approach, the number of iterations equals the number of times a steepest ascent 
direction has to be looked for. The results can be summarized as follows. 

RS-gpr and DM-gpr are both adapted versions of the recursive search procedure of 
[32], but the former outperforms the latter. This is due to the fact that the latter needs 
the very time-consuming calculation of the distance matrix D in order to solve the 
problem (see section 2.2.1). 
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The hybridization of the recursive search procedure and the steepest ascent 
approach, as discussed in section 2.2.2, is beneficial. The number of iterations for the 
RS/SA-gpr, RS/SA(FB)-gpr and SA-gpr procedures is significantly lower than the RS-
gpr procedure, since these algorithms delay the activities of several disconnected sub-
trees at the same time. 

The best performing procedure is the RS/SA(FB)-gpr procedure of section 2.2.3. 
For all other procedures, the CPU-times are positively correlated with the percentage 
of negative cash flows in the problem instances. In the forward/backward approach, 
problem instances can be resolved by using a backward recursive search procedure 
whenever the percentage of negative cash flows exceeds 50%. 

Table 1. Computational performance for the different search procedures 

% neg CPU iter CPU iter CPU iter CPU iter CPU iter
0% 0.157 1.00 0.156 1.00 0.156 1.00 0.297 1.00 19.525 1.00

10% 0.197 3.14 0.194 2.22 0.194 2.22 0.476 2.22 21.570 29.96
20% 0.228 4.93 0.209 2.67 0.209 2.67 0.543 2.67 22.816 46.23
30% 0.305 9.62 0.229 3.14 0.229 3.14 0.590 3.14 25.506 80.40
40% 0.439 19.07 0.248 3.45 0.248 3.45 0.593 3.45 27.930 116.92
50% 0.612 36.98 0.268 3.54 0.268 3.54 0.603 3.54 29.277 152.90
60% 0.762 55.48 0.285 3.46 0.263 3.19 0.606 3.46 31.871 169.95
70% 0.920 79.44 0.300 3.29 0.266 2.91 0.620 3.29 31.685 173.46
80% 1.066 102.49 0.319 3.05 0.290 2.78 0.616 3.05 32.172 150.67
90% 1.170 121.55 0.335 2.68 0.344 2.75 0.586 2.68 28.498 118.15

100% 1.283 141.48 0.337 2.00 0.169 1.00 0.519 2.00 23.905 69.10
Avg 0.649 52.29 0.262 2.77 0.240 2.61 0.550 2.77 26.796 100.79
Max 362 18 18 18 754

DM-gprRS-gpr RS/SA-gpr RS/SA(FB)-gpr SA-gpr

 

4   Other Application Areas 

The excellent performance (the CPU-times are only fractions of milliseconds) of the 
hybrid recursive search procedure is extremely important, since the procedure will not be 
restricted to solve problem instances as proposed in Eqs (3)-(6). Instead, the procedure 
will often be embedded in larger, more complex, algorithms where the hybrid recursive 
search procedure acts as a sub-problem solver. A straightforward example is the 
incorporation of the original recursive search procedure for the max-npv problem into a 
branch-and-bound procedure to solve the resource-constrained project scheduling 
problem with discounted cash flows [32]. In this problem, the required computational 
effort by the recursive search procedure has to be extremely small to allow the efficient 
computation of upper bounds for the nodes in the branch-and-bound tree which may run 
in the thousands (even millions). In this section, we describe two application areas 
without cash-flow optimization, where the efficient use of the hybrid recursive search 
procedure is extremely important and acts as a sub-problem solver.  

4.1   Work Continuity Constraints 

Construction projects are often characterized by repeating activities that have to be 
performed from unit to unit. Highway projects, pipeline constructions and high-rise 
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buildings, for example, commonly require resources to perform the work on similar 
activities that shift in stages. Indeed, construction crews perform the work in a 
sequence and move from one unit of the project to the next. This is mainly the result 
of the subdivision of a general activity (e.g. carpentry) into specific activities 
associated with particular units (e.g. carpentry at each floor of a high-rise building). 
Since the resources of these repeating activities have to be performed from unit to 
unit, it is crucial in scheduling these project types to ensure the uninterrupted usage of 
resources of similar activities between different units, as to enable timely movement 
of resources (crews) from one unit to the other, avoiding idle time. This feature is 
known as work continuity constraints [11]. 

The hybrid recursive search procedure is able to solve the project scheduling 
problem with work continuity constraints, to assure that idle time of resources is 
minimized. The basic philosophy of the net present value is to schedule activities with 
a negative cash flow as late as possible and activities with a positive cash flow as 
soon as possible. A similar philosophy can be applied to the work continuity 
constraint problem, since the idle time of resources can be minimized by minimizing 
the time window between the first and the last activity of the activity set that relies on 
the resource. Therefore, by assigning a fictive negative cash flow to the start activity 
of the activity set and a fictive positive cash flow to the last activity of the activity set, 
we simulate attraction between these two activities, and hence, the total time window 
(and consequently, the resource idle time) will be minimized. 

[30] have illustrated the importance of work continuity constraints on the huge and 
complex “Westerschelde Tunnel” project. The incorporation of work continuity 
constraints reduces the total resource idle time in the schedule, which leads to a cost 
saving of more than 1 million euro. A detailed description of this project can be found 
in [30] or on http://www.westerscheldetunnel.nl. 

4.2   Open Pit Mining 

The open-pit mining problem aims at the determination of the contours of a mine, 
based on economic data and engineering feasibility requirement in order to yield 
maximum possible net income [19]. More precisely, blocks of earth are removed from 
the surface to retrieve the ore contained in them. Therefore, the entire volume is 
divided into blocks with a weight representing its estimated value. This value 
represents the value of the ore of the block, minus all the costs of excavating the 
block. The objective is to determine the set of blocks to remove, in order to maximize 
net benefits, and subject to several constraints. These constraints represent the 
precedence relations among blocks, preventing to remove blocks for which other 
blocks on top of them are not yet removed, and technological slope requirements 
constraints. 

The open-pit mining problem can be represented by a graph G = (N, A), where 
each node in N represents a block with a weight equal to its net value. The arc set A 
between the nodes represents the precedence relations between the blocks. The 
decision which blocks to extract is equivalent to the search of a maximum weight set 
of nodes such that all nodes in the set have their successor nodes in the set. This 
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problem is known in the graph theory literature as the maximum closure problem, and 
such a set is called a maximum closure of graph G. [24] has shown that the maximal 
closure problem can be converted to a maximal flow problem. Consequently, any 
maximal flow algorithm can solve the problem with, as a by-product, a minimal cut 
that serves as the maximal closure. 

The maximum closure problem can be solved by the hybrid recursive search 
procedure. Indeed, each node of the graph has a weight that can be either positive or 
negative. A closure of G is a subset of nodes such that every successor of each node 
of the subset also belongs to that subset. Hence, a maximal closure of G is a subset of 
nodes such that the sum of the node weights is at least as large as any other closure of 
G. The node weights can serve as cash flows for the hybrid search procedure, with a 
fictive project deadline equal to infinity. In doing so, the procedure splits the project 
activities into two parts: activities near the beginning of the projects and activities 
close to the deadline. This split corresponds to the closure of the project network and 
hence, determines to optimal blocks to extract for the open-pit mining problem. 

5   Conclusions 

In this paper we have compared five solution procedures for the unconstrained project 
scheduling problems with discounted cash flows with generalized precedence 
constraints (max-npv-gpr problem). We show that the hybrid adaptation of different 
procedure lead to the most promising results.  

More precisely, we have compared three hybrid adaptations of a recursive search 
procedure of [32] with a steepest ascent procedure of [27] and a search procedure of 
[8]. Computational experience has revealed that the hybrid recursive search method 
outperforms the steepest ascent procedure. Additional tests have shown that both the 
hybrid recursive search procedure and the steepest ascent procedure outperform the 
procedure by [8]. The main reason is that the distance matrix is a very time-
consuming activity in the last mentioned procedure. 

Our future research intensions are two-fold. First, we want to improve the 
efficiency of the hybrid recursive search procedure to be able to cope with very large 
problem instances. Second, we want to use the procedure as a sub-problem solver in 
combinatorial optimization algorithms (such as branch-and-bound) to solve large, 
real-life problem instances. The application areas of the hybrid recursive search 
procedure are numerous. [14] mentioned possible applications for the transitive 
closure problem, such as portfolio selection, task scheduling in job shop 
environments, selection of freight handling terminals and many more. [31] have 
discussed a modified version for the resource-constrained project scheduling problem 
with JIT characteristics, but they do not incorporate generalized precedence relations. 
In the near future, we will embed the hybrid recursive search procedure in a branch-
and-bound procedure to schedule R&D projects where quality restrictions are taken 
into account. The different procedures are available upon request, such that 
researchers will be motivated to use this efficient code as a part of their algorithms for 
complex, large-sized and realistic problems. 
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Abstract. In a Proportional Representation (PR) electoral system it is assumed 
that seats are apportioned to the different electoral districts/states according to 
the corresponding voters’ distribution. In a previous paper we proposed a MILP 
(Mixed Integer Linear Programming) model to apportion the seats in the Euro-
pean Parliament (EP). Since the exact solution to the problem is not computa-
tionally efficient, we have designed a hybrid metaheuristic algorithm based on 
Variable Neighborhood Search (VNS) and Tabu Search (TS). The proposed  
approach takes into account the existing situation, guaranteeing a minimum 
number of seats, independently of the population size of each member. The 
model is illustrated with actual data and its results are compared with the pre-
sent apportionment. The results show that the proposed approach can signifi-
cantly improve the proportionality of the present apportionment. 

1   Introduction 

PR is inspired in the principle of “one person, one vote”. The application of this prin-
ciple to the apportionment problem implies that the number of seats allocated to each 
electoral district should be as close as possible to what would correspond to its share 
of the electoral population. The idea is simple but its implementation is not trivial 
since seats are indivisible and hence while the distribution of the population is frac-
tional the distribution of seats is discrete. This means that a perfectly proportional 
apportionment is usually not feasible. Since there are different ways to measure 
malapportionment, i.e. the deviation from perfect proportionality, ([1]) finding a 
“good” apportionment is a complex problem. 

There are two classes of apportionment methods: divisor methods and quota meth-
ods. Among the divisor methods we find the Greatest Divisors or Jefferson method, 
the Smallest Divisors or Adams method, the Major Fractions or Webster method, the 
Harmonic Means or Dean method and the Equal Proportions, Hill or Huntington 
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method [2]. Quota methods (a.k.a. Greatest Remainders methods) include the Hare 
method, the Droop method and the Imperiali method [3]. There are many real exam-
ples of significant malapportionment [4] and although there is an interesting debate 
about the comparative advantages of each of these methods (e.g. [2], [3], [5], [6], [7]), 
it cannot be concluded that any of them is better than the rest. 

In the real world, apart from the fact that some malapportionment is unavoidable, 
there are also practical and political considerations in addition to pure proportionality 
that may have to be taken into account, e.g. establishing a lower limit of representa-
tion so that all electoral districts have a guaranteed minimum number of seats inde-
pendently of its size. 

In the case of the EP, the apportionment is the result of a complex, political, multi-
lateral negotiation process. Table 1 shows the population and present number of seats 
for each EP member country. It can be seen in any of the figures in the Appendix that 
the present EP apportionment is not very proportional to population with larger coun-
tries getting a smaller share than smaller ones. 

Table 1. Population distribution and present seats apportionment  

Country Abrev Population (millions) Seats 
Austria at 8,059 18 
Belgium be 10,348 24 
Cyprus cy 0,797 6 

Czech Rep cz 10,202 24 
Denmark dk 5,387 14 
Estonia ee 1,35 6 
Finland fi 5,21 14 
France fr 59,725 78 

Germany de 82,551 99 
Greece el 10,68 24 

Hungary hu 10,12 24 
Ireland ie 3,947 13 

Italy it 57,646 78 
Latvia lv 2,321 9 

Lithuania lt 3,454 13 
Luxembourg lu 0,448 6 

Malta mt 0,393 5 
Netherlands nl 16,215 27 

Poland pl 38,195 54 
Portugal pt 10,191 24 
Slovakia sk 5,381 14 
Slovenia sl 1,964 7 

Spain es 41,101 54 
Sweden se 8,956 19 

UK uk 59,28 78 
TOTAL --- 453,921 732 
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In the next section, we formulate a Mixed-Integer Linear Programming model for 
the apportionment problem. In section 3 we present the hybrid metaheuristic algo-
rithm that we propose as efficient solution method. Computer results are reported in 
Section 4. Finally, in Section 5 some conclusions are drawn. 

2   Quasi-Pure Proportional Apportionment Model 

In ([8]) the authors have proposed a Quasi-Pure Proportional Apportionment (QPPA) 
model. Let: 

N  number of EP member countries 
pr  population of EP member country r 
P=Σrpr sum of EP member countries population  
sr  number of seats presently assigned to EP member country r 
S=Σrsr total number of seats in EP 
smin  guaranteed minimum number of seats per EP member country 
α+

r positive deviation (w.r.t. proportional ratio) of ratio of seats to popu-
lation for country r  

α-
r negative deviation (w.r.t. proportional ratio) of ratio of seats to 

population for country r 
The QPPA model is: 
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This is a Mixed-Integer Linear Programming (MILP) with 2⋅N continuous vari-
ables and N integer variables. The model finds a feasible (i.e. taking into account the 
guaranteed minimum number of seats) allocation of the total number of seats mini-
mizing the sum of deviations (either from above or from below) from proportional 
representation. For an ideal PR apportionment (generally not feasible) these devia-
tions would be zero. Note that the third set of constraints are just the definitions of  
the variables that measure the deviation (positive or negative) of the ratio of seats to 
population for each country; these deviation variables are used in the objective  
function. 
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In ([8]) this combinatorial optimization problem was solved six times with smin 
varying from 0 to 5. Version 7.0 of the state-of-the-art CPLEX optimization software 
was used (http://www.cplex.com), running on an Intel Pentium IV 2.8 GHz micro-
processor. As it often happens with MILP problems, finding the exact optimal  
solution can take an unpredictable (potentially large) amount of computing time. An 
upper limit of 5 hours of computing time was imposed so that CPLEX stopped after 
that time recording the best solution found. That is what happened in all six cases. 
Table 2 shows the results obtained as well as, again, the present apportionment. 

Table 2. Solution provided by CPLEX and present seats apportionment  

smin 
Country 

Present 
Appor. 0 1 2 3 4 5 

Austria 18 13 13 13 13 13 13 

Belgium 24 17 17 17 17 17 17 

Cyprus 6 1 1 2 3 4 5 

Czech Rep 24 17 17 17 17 17 17 

Denmark 14 9 9 9 9 9 9 

Estonia 6 2 2 2 3 4 5 

Finland 14 8 8 8 8 8 8 

France 78 96 96 96 96 96 96 

Germany 99 133 133 130 126 121 115 

Greece 24 17 17 17 17 17 17 

Hungary 24 16 16 16 16 16 16 

Ireland 13 6 6 6 6 6 6 

Italy 78 93 93 93 93 93 93 

Latvia 9 4 4 4 4 4 5 

Lithuania 13 6 6 6 6 6 6 

Luxembourg 6 1 1 2 3 4 5 

Malta 5 1 1 2 3 4 5 

Netherlands 27 26 26 26 26 26 26 

Poland 54 62 62 62 62 62 62 

Portugal 24 16 16 16 16 16 16 

Slovakia 14 9 9 9 9 9 9 

Slovenia 7 3 3 3 3 4 5 

Spain 54 66 66 66 66 66 66 

Sweden 19 14 14 14 14 14 14 

UK 78 96 96 96 96 96 96 

Objective Function 
Value 

30.5559 1.8096 1.8096 5.1283 9.1952 13.6424 18.4699 
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It can be seen that the present apportionment has a large value of the objective 
function (not unexpected since it is far from proportionality) and that the objective 
function decreases sharply (meaning a significant proportionality improvement) as the 
guaranteed minimum number of seats smin decreases. Those countries that gain  
more from the apportionment changes seem to be those whose population is more 
under-represented (e.g. Germany) while the ones that may lose seats would be some 
smaller, over-represented countries (e.g. Luxemburg). 

3   The VNTS Proposed 

Since optimally solving the above problem does not seem efficient, a search strategy 
must be designed to obtain better results. We have opted for a metaheuristic algorithm 
based on a hybrid of VNS ([9] and [10]) and TS ([11]). The initial solution is the 
present apportionment. 

]s,...,s,...,s,s[ o
N

o
r

o
2

o
1  (2) 

We have defined a set of pre-selected neighbourhood structures Nk(x) that consist 
in adding and subtracting a total of k seats to some countries. The amount of seats 
added and subtracted has to be equal since the total number of seats (S) must be kept 
constant. For example, for neighborhood N2(x) a neighbor solution would be obtained 
taking one seat from each of two countries (which may coincide) and giving them to 
another two countries (which also may coincide) 

]0s,...,1s,...,1s,...,2s,...,0s[ Nkji1 +++−+  (3) 

Obviously, the proposed approach avoids unfeasible solutions such as those that 
would assign a negative number of seats or a number of seats less than smin to any 
country. The pseudocode of the proposed VNTS algorithm is: 

Pseudo-code of proposed VNTS algorithm 

Initialization. Select the set of neighborhood struc-
tures Nk, k=1,…, kmax, that will be used in the search; 
find an initial solution x; choose a stopping condi-
tion; 

 
Repeat the following sequence for a fixed number of it-
erations (ITER): 

  1) Set k←1; 
 2) Until k=kmax repeat the following steps: 

a) Exploration of neighborhood. Find the best 
neighbor x’ of x (x’∈Nk(x)) using Tabu 
Search; 
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b) Move or not. If the solution thus obtained 
x’ is better than x, set x ←x’, and k←1; 
otherwise, set k←k+1; 

 end. 

As for the tabu search mentioned in step 2a), it explores the neighborhood Nk(x). 
The value of each movement, i.e. the variation of the objective function can be effi-
ciently computed based on the change in the representation ratio of only the countries 
affected by the move. As adaptive memory mechanism, a tabu list has been proposed, 
where the previous value of the number of seats is recorded for the affected countries, 
so that for a number of T iterations (i.e. a tabu tenure) changing the number of seats of 
any country to its recorded value is prohibited. The tabu search algorithm method 
ends after a certain number of iterations (parameter ITERTB) without improving the 
best solution found. 

4   Computational Experiences 

In table 3 we show the solutions provided by the hybrid for smin = 0, 1, 2, 3, 4 and 5. 
We have used the following values for the different parameters: kmax=2; 
ITERTB=50; T=5; and ITER=5000. We obtained the similar solutions using different 
values which may show the robustness of the proposed approach. In particular, for 
kmax=3 the time taken by the metaheuristic was higher than for kmax=2, providing 
the same results. We tried to solve the model for kmax=4 as well, however, we had to 
interrupt the resolution after a couple of hours, obtaining again the same results as in 
the case of kmax=2.  

The three last rows contain respectively the value of the objective function, the 
percentage error with respect to the solution obtained by CPLEX, measured as: 

100* −

CPLEX

CPLEXVNTS

ValueFunctionObjective

ValueFunctionObjectiveValueFunctionObjective  (4) 

and the CPU time used by the proposed hybrid approach. 
We can observe from table 3 that the metaheuristic in all cases obtains better  

results than CPLEX (see the minus sign of the relative errors). Also, it is remark-
able that, compared to CPLEX, the time taken to solve every case is insignificant. 

Figure 1 (in the Appendix) graphically shows the solutions found by the proposed 
approach for smin varying from 0 through 5. Note that except for three member coun-
tries (namely Malta, Luxemburg and Cyprus) the seat apportionment of the rest of 
countries is very close to its proportional quota (the dashed line segment in each 
graphic) and for these three countries their deviation from their quotas is significantly 
smaller than at present. The range of the ratio %seats/%population would be reduced 
from the present (0.74, 8.31) to (0.78, 1.58) for smin=1 for example. 

Finally, we can observe from table 4 how the value of the deviation ranges of the 
ratio %seats/%population (i.e. the difference between the maximum and minimum 
values) increases with smin. 
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Table 3. Solution provided by VNTS approach  

smin 
Country 

Present 
Appor. 0 1 2 3 4 5 

Austria 18 13 13 13 13 13 13 

Belgium 24 17 17 17 17 17 17 

Cyprus 6 1 1 2 3 4 5 

Czech Rep 24 16 16 16 16 16 16 

Denmark 14 9 9 9 9 9 9 

Estonia 6 2 2 2 3 4 5 

Finland 14 8 8 8 8 8 8 

France 78 97 97 96 96 96 96 

Germany 99 133 133 133 129 124 118 

Greece 24 17 17 17 17 17 17 

Hungary 24 16 16 16 16 16 16 

Ireland 13 6 6 6 6 6 6 

Italy 78 93 93 93 93 93 93 

Latvia 9 4 4 4 4 4 5 

Lithuania 13 6 6 6 6 6 6 

Luxembourg 6 1 1 2 3 4 5 

Malta 5 1 1 2 3 4 5 

Netherlands 27 26 26 26 26 26 26 

Poland 54 62 62 61 61 61 61 

Portugal 24 16 16 16 16 16 16 

Slovakia 14 9 9 9 9 9 9 

Slovenia 7 3 3 3 3 4 5 

Spain 54 66 66 66 66 66 66 

Sweden 19 14 14 14 14 14 14 

UK 78 96 96 95 95 95 95 
Objective Function 

Value 
30.5559 1.8076 1.8076 5.1051 9.1719 13.6191 18.4466 

Relative Error 
(%) 

-- -0.1083 -0.1083 -0.4533 -0.2531 -0.1706 -0.1263 

CPU time (s) -- 28.67 22.58 19.94 18.12 16.42 14.83 

Table 4. Minimum, maximum and deviation range of the ratio %seats/%population 

smin min max max-min 

0 0.78 1.58 0.80 

1 0.78 1.58 0.80 

2 0.92 3.16 2.24 

3 0.94 4.73 3.79 

4 0.93 6.31 5.38 

5 0.89 7.89 7.00 
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5   Conclusions 

In this article we have presented an efficient solution approach for the European Par-
liament apportionment problem that is able to allocate quasi-proportionally to their 
population the total number (732) of seats. Since the problem has a combinatorial 
structure exact methods are ineffective which makes necessary the use of metaheuris-
tic approaches such as VNS or tabu search. We have introduced a new hybrid of these 
two metaheuristics that solves the problem in a matter of seconds. Experiments with 
various values of smin have been carried out giving in all cases a more proportional 
apportionment than the present one. 
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Appendix  
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Fig. 1. Proportionality profile of present vs solution provided by VNTS approach (smin=0, 1, 2, 
3, 4 and 5) 
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